×

Warning

JUser: :_load: Unable to load user with ID: 1112

Blog

  • Home
    Home This is where you can find all the blog posts throughout the site.
  • Categories
    Categories Displays a list of categories from this blog.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Bloggers
    Bloggers Search for your favorite blogger from this site.
  • Team Blogs
    Team Blogs Find your favorite team blogs here.
  • Login
    Login Login form

Ad-hoc secure two-party computation on mobile devices using hardware tokens

by
  • Font size: Larger Smaller
  • Subscribe to this entry
  • Print

The paper "Ad-hoc secure two-party computation on mobile devices using hardware tokens" was created by our TUDA partners Daniel Demmler, Thomas Schneider and Michael Zohner and has been accepted for publication at 23rd USENIX Security Symposium (USENIX Security'14) in August 20-22, 2014. We would like to provide you a short insight:

Secure two-party computation allows two mutually distrusting parties to jointly compute an arbitrary function on their private inputs without revealing anything but the result. An interesting target for deploying secure computation protocols are mobile devices as they contain a lot of sensitive user data. However, their resource restrictions make this a challenging task. In this work, we optimize and implement the secure computation protocol by Goldreich-Micali-Wigderson (GMW) on mobile phones. To increase performance, we extend the protocol by a trusted hardware token (i.e., a smartcard). The trusted hardware token allows to pre-compute most of the workload in an initialization phase, which is executed locally on one device and can be pre-computed independently of the later communication partner. We develop and analyze a proof-of-concept implementation of generic secure two-party computation on Android smart phones making use of a microSD smartcard. Our use cases include private set intersection for finding shared contacts and private scheduling of a meeting with location preferences. For private set intersection, our token-aided implementation on mobile phones is up to two orders of magnitude faster than previous generic secure two-party computation protocols on mobile phones and even as fast as previous work on desktop computers.

https://eprint.iacr.org/2014/467

 

 

in General News Hits: 2595 0 Comments
0

Comments

  • No comments made yet. Be the first to submit a comment

Leave your comment

Guest
Guest Wednesday, 24 October 2018

Project reference: 609611
Start date: 2013-11-01
End date: 2016-10-31
Duration: 36 months
Project cost: € 10.456.059
Project funding: € 7.550.000                   

          Programme type:
Seventh Framework Programme
Programme acronym:
FP7-ICT-2013-10
Contract type:
Collaborative project

 

  europa

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 609611

 

BCMath lib not installed. RSA encryption unavailable