
D13.3
The Full Set of New Protocols

Project number: 609611
Project acronym: PRACTICE

Project title: Privacy-Preserving Computation in the Cloud
Project Start Date: 1st November, 2013

Duration: 36 months
Programme: FP7/2007-2013

Deliverable Type: Report
Reference Number: ICT-609611 / D13.3 / 1.0

Activity and WP: Activity 1 / WP13
Due Date: October 2016 - M36

Actual Submission Date: 3rd November, 2016

Responsible Organisation: BIU
Editor: Benny Pinkas

Dissemination Level: PU
Revision: 1.0

Abstract:

This document describes the full set of new secure compu-
tation protocols that were designed by the partners of the
PRACTICE project. The document has short descriptions
of protocols that were already published in deliverable D13.1,
and a detailed description of protocols that were designed in
the last year of the project.

Keywords: Secure multi-party comptutation.

This project has received funding from the European Union’s Seventh
Framework Programme for research, technological development and demon-
stration under grant agreement no. 609611.

The Full Set of New Protocols

Editor

Benny Pinkas (BIU)

Contributors (ordered according to beneficiary numbers)

Florian Hahn (SAP)
Florian Kerschbaum (SAP)
Agnes Kiss (TUDA)
Thomas Schneider (TUDA)
Michael Zohner (TUDA)
Pille Pullonen (CYBER)
Claudio Orlandi (AU)

PRACTICE D13.3 Page I

The Full Set of New Protocols

Executive Summary
This report describes the full set of secure multi-party computation protocols that were designed
by the members of the PRACTICE project. The main goal of these protocols is to enhance the
performance and scalability of the available secure multi-party computation solutions, in order
to address the needs of the field, which were described in Deliverable D11.2 of this project.
The results that are presented in this report have been published in multiple research papers
at top-tier conferences.

The document contains short descriptions of protocols that were already published in deliverable
D13.1, which was published after the first two years of the project, and a detailed description
of protocols that were designed in the final year of the project.

The first chapter of this report is an introduction. The second chapter describes new methods
for generic multi-party computation (generic meaning that these methods can be used for
computing arbitrary functions). The third chapter describes improvements to different tools
and primitives that are used in secure computation. These improvements affect the performance
of each secure computation protocol that will use these tools. The fourth chapter of this
report describes new protocols for order preserving encryption, that is a crucial tool for storing
encrypted databases and then performing queries on the encrypted data. The fifth and final
chapter describes new methods for computing private set intersection, which is a secure protocol
which, rather then being generic, solves a specific problem of high interest.

PRACTICE D13.3 Page II

The Full Set of New Protocols

Contents

1 Introduction 1
1.1 Contents . 1
1.2 Publications . 2

2 Improved Secure Computation Protocols 4
2.1 Fast Garbling of Circuits Under Standard Assumptions (short description) . . . 4

2.1.1 The Results . 4
2.2 Efficient Constant Round Multi-Party Computation Combining the BMR and

SPDZ Protocols (short description) . 5
2.3 ABY: Mixed-Protocol Secure Computation (short description) 7
2.4 Private Function Evaluation . 8

2.4.1 Private Function Evaluation Using Universal Circuits 8
2.4.2 Valiant’s Universal Circuit Construction 8
2.4.3 The Size and the Depth of Valiant’s UC 14
2.4.4 Comparison of Valiant’s UC for PFE with Other PFE Protocols 18

2.5 TinyTable Secure Two-Party Computation . 21

3 Tools with Improved Efficiency 23
3.1 Simple and Efficient Oblivious Transfer (short description) 23
3.2 Actively Secure Oblivious Transfer Extension (short description) 24
3.3 Improved Actively Secure Oblivious Transfer Extension 25

3.3.1 Correlated OT (C-OT) . 25
3.3.2 Sender Random OT (SR-OT) . 28
3.3.3 Receiver Random OT (RR-OT) . 29
3.3.4 Random OT (R-OT) . 30
3.3.5 Evaluation of Special Purpose OT Functionalities 31

3.4 Token-Aided Mobile GMW (short description) 32
3.5 Two-Party Unsigned Arithmetic Based on Additive Secret Sharing (short de-

scription) . 33
3.6 Zero-Knowledge from Garbled Circuits – and GC for ZK (short description) . . 33
3.7 ZKBoo – Practically Efficient Zero-Knowledge Arguments 34

3.7.1 (2,3)-Function Decomposition . 34

4 Order-Preserving Encryption for Secure Database Qeuries 38
4.1 Optimal Average-Complexity Ideal-Security Order-Preserving Encryption (short

description) . 38
4.2 Frequency-Hiding Order-Preserving Encryption (short description) 38

PRACTICE D13.3 Page III

The Full Set of New Protocols

5 Protocols for Private Set Intersection 40
5.1 PSI Protocols based on Oblivious Transfer (short description) 40
5.2 A New Set of Protocols for PSI . 40

5.2.1 Secure Computation-based OPRF Evaluation 41
5.2.2 OT-based OPRF Evaluation . 41

6 Conclusion 45

7 List of Abbreviations 46

PRACTICE D13.3 Page IV

The Full Set of New Protocols

List of Figures

2.1 Overview of the ABY framework . 7
2.2 Skeleton of Valiant’s edge-universal graph and optimized cases. 10
2.3 Our upper and lower bounds for the size of Valiant’s edge-universal graph con-

struction for Γ1(n) graphs, along with Valiant’s upper bound on the same con-
struction and the exact size Exact(n), considering the size of the embedded
graph n ∈ {1, . . . , 100,000}. 15

2.4 The deviation of the mean of our upper and lower bounds (Equation 2.7 and
Equation 2.8) from the exact size of the edge-universal graph Exact(n) + n,
considering the size of the embedded graph n ∈ {1, . . . , 100,000}. 16

2.5 Functionality for preprocessing, semi-honest security. 22
2.6 Protocol for semi-honest security. 22

3.1 Our protocol in a nutshell . 23
3.2 Run-time overhead over R-OT for different OT flavors using the semi-honest OT

extension on 128-bit strings in the LAN (a)- and WAN (b) setting. 32
3.3 The three phases, workload distribution, and communication in our token-aided

scheme. 32
3.4 Pictorial representation of a (2,3)-decomposition of the computation y = φ(x)

showing the three branches. 35
3.5 ZKBoo protocol for the language L in the commitment-hybrid model. 37

PRACTICE D13.3 Page V

The Full Set of New Protocols

List of Tables

2.1 The number of symmetric-key operations using different PFE protocols: Valiant’s
UC with SFE, the universal circuit construction from [44] or Mohassel et al.’s
OT-based method from [52]. u, v and k denote the number of inputs, outputs
and gates in the simulated circuit, and k∗ denotes the number of gates in the
equivalent fanout-2 circuit. 19

2.2 Running time and communication for our UC-based PFE implementation with
ABY. We include the compile time, the I/O time of the UC compiler, and the
evaluation time (in milliseconds) and the total communication (in Kilobytes)
between the parties in GMW as well as in Yao sharing. 20

3.1 Bits sent for sender PS and receiver PR for m 1-out-of-2 OT extensions of n-
bit strings and security parameter κ for the semi-honest OT extension protocol
of [31] with our optimizations. 25

PRACTICE D13.3 Page VI

The Full Set of New Protocols

Chapter 1

Introduction

The main task of WP13 is the specification and design of new protocols, which are intended
to improve the state-of-the-art in secure multi-party computation, in directions that are most
relevant to secure computation in the cloud. Deliverable D11.2 of WP11 (An evaluation of
current secure computation protocols) identified two main issues where current protocols are
lacking: (1) the scalability of protocols for generic secure computation, and in particular pro-
tocols that are secure against malicious adversaries; (2) there are specific tasks, specifically
private set intersection (PSI), where generic protocols are considerably less efficient (perhaps
by orders of magnitude) than is required.
The work that is described in this deliverable was carried out by many members of WP13.
The work mostly focused on addressing the two issues that were highlighted by deliverable
D11.2. Most of the results that were achieved improved the performance and scalability of
protocols for generic secure computation. Other results dramatically improved the state-of-
the-art protocols for specific tasks, particularly for private set intersection (PSI), and for order
preserving encryption, which is an essential tool for secure database queries.
The document contains short descriptions of protocols that were already published in deliverable
D13.1, which was published after the first two years of the project, and a detailed description
of protocols that were designed in the final year of the project.
The results that are described in this deliverable were published in the most prestigious con-
ferences in security, as is detailed in Section 1.2.

1.1 Contents
Chapter 2 describes new methods for generic multi-party computation (generic meaning that
these methods can be used for computing arbitrary functions). These new methods has consider-
able improved efficiency compared to the former state of the art. Section 2.1 describes a version
of Yao’s secure computation protocol, which is currently the basis for most secure computation
solutions. The new protocol makes use of a new garbling method, which is based on standard
assumptions (whereas previous state-of-the-art garbling methods depended on less established
cryptographic assumptions). Section 2.2 describes the first constant round secure multi-party
computation protocol that is secure against malicious adversaries and has an efficient con-
crete overhead. Section 2.3 describes a framework for efficient mixed-protocol two-party secure
computation: secure computation protocols typically use either arithmetic circuits, where the
primitive operations are addition and multiplication, or boolean circuits, where the primitive
operations are XOR and AND. Each of these protocol types is better at computing different
types of functions. The new framework is the first to enable easy and efficient computation

PRACTICE D13.3 Page 1 of 51

The Full Set of New Protocols

which combines protocols of both types. Section 2.4 describes new protocols for private function
evaluation. Namely, for secure computation which hides the function that is being computed.
Section 2.5 describes the TinyTable protocol for secure two-party computation, for maliciously
secure two-party computation in the preprocessing model.
Chapter 3 describes improvements to different tools and primitives that are used in secure com-
putation. These improvements affect the performance of each secure computation protocol that
will use these tools. Section 3.1 describes a new and extremely simple oblivious transfer proto-
col. Section 3.2 describes the first efficient oblivious transfer extension protocol that is secure
against malicious adversaries. Section 3.3 describes recent improvements of oblivious transfer
extension protocols. Section 3.4 describes an efficient implementation of protocols of the GMW
family using hardware tokens. Section 3.5 described a new protocol stack for secure unsigned
arithmetic computation for two parties, supporting more basic operations than just addition
and multiplication, and thus supporting more efficient implementations. Two-Party Unsigned
Arithmetic Based on Additive Secret Sharing Section 3.6 describes how to use garbled cir-
cuits for running very efficient zero-knowledge proofs of non-arithmetic statements. Section 3.7
describes practically efficient zero-knowledge arguments especially tailored for Boolean circuits.
Chapter 4 describes two new protocols for order preserving encryption, that is a crucial tool
for storing encrypted databases and then performing queries on the encrypted data. The first
protocol, in Section 4.1 improves the performance of the currently available order preserving
encryption protocols. The second protocol, in Section 4.2, achieves a strictly stronger notion of
security than any other order-preserving encryption scheme.
Chapter 5 describes improved new methods for private set intersection, that are based on using
oblivious transfer extension and advanced hashing schemes. The chapter describes detailed
experiments showing a performance improvement of more than an order of magnitude. Sec-
tion 5.1 describes the most efficient up-to-date PSI protocols, which are based on oblivious
transfer extension. Section 5.2 describes new and improved protocols for PSI.

1.2 Publications
The results described in this document were published in the following publications, which were
published in the top academic security conferences:

• Ad-Hoc Secure Two-Party Computation on Mobile Devices using Hardware Tokens. Daniel
Demmler, Thomas Schneider, and Michael Zohner. Usenix Security 2014.

• Optimal Average-Complexity Ideal-Security Order-Preserving Encryption. Florian Ker-
schbaum, and Axel Schroepfer. ACM Computer and Communication Security 2014.

• Frequency-Hiding Order-Preserving Encryption. Florian Kerschbaum, ACM Computer
and Communication Security 2014.

• ABY – a Framework for Efficient Mixed-Protocol Secure Two-Party Computation. Daniel
Demmler, Thomas Schneider and Michael Zohner. NDSS 2015.

• More Efficient Oblivious Transfer Extensions with Security for Malicious Adversaries.
Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. Eurocrypt 2015.

• The Simplest Protocol for Oblivious Transfer. Tung Chou and Claudio Orlandi. Latin-
crypt 2015.

PRACTICE D13.3 Page 2 of 51

The Full Set of New Protocols

• Efficient Constant Round Multi-Party Computation Combining BMR and SPDZ. Yehuda
Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Crypto 2015.

• Fast Garbling of Circuits Under Standard Assumptions. Shay Gueron, Yehuda Lindell,
Ariel Nof, and Benny Pinkas. ACM Computer and Communication Security 2015.

• Valiant’s Universal Circuit is Practical. Agnes Kiss and Thomas Schneider. Eurocrypt
2016.

• Gate-scrambling Revisited - or: The TinyTable protocol for 2-Party Secure Computation.
Ivan Damgaard, Jesper Buus Nielsen, Michael Nielsen and Samuel Ranellucci. IACR
Cryptology ePrint Archive 2016/695.

• ZKBoo: Faster Zero-Knowledge for Boolean Circuits. Irene Giacomelli, Jesper Madsen
and Claudio Orlandi, USENIX Security Symposium 2016.

PRACTICE D13.3 Page 3 of 51

The Full Set of New Protocols

Chapter 2

Improved Secure Computation
Protocols

2.1 Fast Garbling of Circuits Under Standard Assump-
tions (short description)

This section is based on [29]. The complete description of this work appears in deliverable
D13.1.
A highly important tool in the design of two-party protocols is Yao’s garbled circuit construc-
tion [68], and multiple optimizations on this primitive have led to performance improvements
of orders of magnitude over the last years. However, many of these improvements come at
the price of making very strong assumptions on the underlying cryptographic primitives being
used. The justification behind making these strong assumptions has been that otherwise it is
not possible to achieve fast garbling and thus fast secure computation. This work takes a step
back and examines whether it is really the case that such strong assumptions are needed. It
provides new methods for garbling that are secure solely under the well established assump-
tion that the primitive used (e.g., AES) is a pseudorandom function. The results show that in
many cases, the penalty incurred is not significant, and so a more conservative approach to the
assumptions being used can be adopted.

2.1.1 The Results
This work constructed fast garbling methods solely under the assumption that AES behaves
like a pseudorandom function. In particular, it does not use fixed-key AES, and uses two AES
encryptions per entry in the garbled gates (since using just one encryption requires some sort of
related-key security assumption). In addition, it does not use the free-XOR optimization (since
this requires a non-standard circularity assumption). In brief, the following improvements are
presented:

• Fast AES-NI without fixing the key: AES-NI is a hardware instruction supported on
modern Intel chips, and implements very efficient AES encryption. AES-NI can greatly
benefit from pipelining the blocks that need to be encrypted. In this new work it is shown
that, in addition to pipelining encryptions, it is also possible to pipeline the key schedule
of AES-NI, in order to achieve very fast garbling times without using a fixed key or any
other non-standard AES variant. Namely, the key schedule processing of different keys
can be pipelined together, so that the amortized effect of key scheduling on Yao garbling

PRACTICE D13.3 Page 4 of 51

The Full Set of New Protocols

is greatly reduced. Experiments (described below) show that this and other optimizations
of AES operations have become so fast that the benefits of using fixed-key AES are almost
insignificant. Thus, in contrast to current popular belief, in most cases fixed-key AES is
not necessary for achieving extremely fast garbling.

• Low-communication XOR gates: Over the past years, it has become apparent that
in secure protocols, communication is far more problematic than computation. The free-
XOR technique is so attractive exactly because it requires no computation but also no
communication for XOR gates. The paper provides a new garbling method for XOR gates
that requires storing only a single ciphertext per XOR gate; the technique is inspired by
the work of [42]. The computational cost is 3 AES computations for garbling the gate,
and 1-2 AES computations for evaluating it.

• Fast 4-2 row reduction: Since the free-XOR technique is no longer used, it is possible
to use 4-2 row reduction (GRR) on the non-XOR gates. However, the 4-2 row reduction
method of [63] that uses polynomial interpolation is rather complex to implement (re-
quiring finite field operations and precomputation of special constants to make it fast).
In addition, even working in GF (2n) Galois fields and using the PCLMULQDQ Intel
instruction, the cost is still approximately half an AES computation. The paper presents
a new method for 4-2 row reduction that uses a few XOR operations only, and is trivial
to implement.

The paper described implementations of these optimizations and compared them to the well
known JustGarble library which is based on non-standard assumptions [8]. There is no doubt
that the cost of garbling and evaluation is higher using the new and safer methods, since
they have to run AES key schedules, and we pay for computing XOR gates. However, within
protocol executions, the difference in performance is insignificant. This is demonstrated by
running Yao’s protocol for semi-honest adversaries which has nothing but oblivious transfer
(for which the fast OT extensions of [2] are used), garbled-circuit evaluation and computation,
and communication.

Patent-free garbled circuits. Another considerable advantage of using the new method
for computing XOR gates with low communication is that it does not rely on the free XOR
technique and thus is not patented. Since patents in cryptography are typically an obsta-
cle to adoption, the search for efficient garbling techniques that are not patented is of great
importance.

2.2 Efficient Constant Round Multi-Party Computation
Combining the BMR and SPDZ Protocols (short de-
scription)

This section is based on [47]. The complete description of this work appears in deliverable
D13.1.
There are extremely efficient variants of Yao’s protocol for the two party case that are secure
against malicious adversaries (e.g., [45,48]). These protocols run in a constant number of rounds
and therefore remain fast over slow networks. The BMR protocol [7] is a variant of Yao’s
protocol that runs in a multi-party setting with more than two parties. This protocol works by
the parties jointly constructing a garbled circuit (possibly in an offline phase), and then later

PRACTICE D13.3 Page 5 of 51

The Full Set of New Protocols

computing it (possibly in an online phase). However, in the case of malicious adversaries this
protocol suffers from two main drawbacks: (1) Security is only guaranteed if at most a minority
of the parties are corrupt; (2) The protocol uses generic protocols secure against malicious
adversaries (say, the GMW protocol) that evaluate the pseudorandom generator used in the
BMR protocol. This non black-box construction results in an extremely high overhead.
The TinyOT and SPDZ protocols [17,56] follow the GMW paradigm, and have offline and online
phases. Both of these protocols overcome the issues of the BMR protocol in that they are secure
against any number of corrupt parties, make only black-box usage of cryptographic primitives,
and have very fast online phases that require only very simple (information theoretic) opera-
tions. In the case of multi-party computation with more than two parties, these protocols are
currently the only practical approach known. However, since they follow the GMW paradigm,
their online phase requires a communication round for every multiplication gate. This results
in a large amount of interaction and high latency, especially over slow networks. To sum up,
there is no known concretely efficient constant-round protocol for the multi-party case (with the
exception of [13] that considers the specific three-party case only). This new work introduces
the first protocol with these properties.

Contribution This work provides the first concretely efficient constant-round protocol for
the general multi-party case, with security in the presence of malicious adversaries.
The basic idea behind the construction is to use an efficient non-constant round protocol –
with security for malicious adversaries – to compute the gate tables of the BMR garbled circuit
(and since the computation of these tables is of constant depth, this step is constant round).
A crucial observation, resulting in a great performance improvement, shows that in the offline
stage it is not required to verify the correctness of the computations of the different tables.
Rather, validation of the correctness is an immediate by product of the online computation
phase, and therefore does not add any overhead to the computation. Although our basic
generic protocol can be instantiated with any non-constant round MPC protocol, we provide
an optimized version that utilizes specific features of the SPDZ protocol [17].
In the new general construction, the new constant-round MPC protocol consists of two phases.
In the first (offline) phase, the parties securely compute random shares of the BMR garbled
circuit. If this is done naively, then the result is highly inefficient since part of the computation
involves computing a pseudorandom generator or pseudorandom function multiple times for
every gate. By modifying the original BMR garbled circuit, it was shown that it is possible
to actually compute the circuit very efficiently. Specifically, each party locally computes the
pseudorandom function as needed for every gate (the construction uses a pseudorandom function
rather than a pseudorandom generator), and uses the results as input to the secure computation.
The security proof shows that if a party cheats and inputs incorrect values then no harm is
done, since it can only cause the honest parties to abort (which is anyway possible when there
is no honest majority). Next, in the online phase, all that the parties need to do is reconstruct
the single garbled circuit, exchange garbled values on the input wires and locally compute the
garbled circuit. The online phase is therefore very fast.
In a concrete instantiation of the protocol, based on using the SPDZ protocol [17] in the offline
phase, there are actually three separate phases, with each being faster than the previous. The
first two phases can be run offline, and the last phase is run online after the inputs become
known.

• The first (slow) phase depends only on an upper bound on the number of wires and the
number of gates in the function to be evaluated. This phase uses Somewhat Homomorphic
Encryption (SHE) and is equivalent to the offline phase of the SPDZ protocol.

PRACTICE D13.3 Page 6 of 51

The Full Set of New Protocols

• The second phase depends on the function to be evaluated but not the function inputs;
in our proposed instantiation this mainly involves information theoretic primitives and is
equivalent to the online phase of the SPDZ protocol.

• In the third phase the parties provide their input and evaluate the function; this phase
just involves exchanging shares of the circuit and garbled values on the input wire and
locally computing the BMR garbled circuit.

2.3 ABY: Mixed-Protocol Secure Computation (short
description)

This section is based on [19]. The complete description of this work appears in deliverable
D13.1.
In generic secure computation, the function to be evaluated is often represented as a circuit. The
two most common types of circuits that are used in secure computation are Arithmetic circuits,
where the primitive operations are addition and multiplication, and Boolean circuits, where the
primitive operations are XOR and AND. The efficiency of secure computation protocols goes
hand-in-hand with an efficient circuit representation of the function. For instance, performing
a multiplication between two `-bit values in an Arithmetic circuit is very efficient but requires
a circuit of size O(`2) for Boolean circuits.
To overcome the dependence on an efficient function representation, several works proposed
to mix secure computation protocols based on Arithmetic and Boolean circuits. One of these
works is the ABY framework [19] for which an overview is given in Figure 2.1.
The ABY framework enables to convert between different representations of the inputs in a
dynamic and efficient manner. The possible representation are Yao sharing, Boolean sharing,
and arithmetic sharing. Each input representation is efficient for a different type of compu-
tation. (For example, Yao sharing is particularly suited for bit-wise operations.) The ABY
framework converts between different representations of the input in order to use the most
efficient representation for each phase of the computation.

A

C

B Y

A2YB2A

Y2B

B2Y

Figure 2.1: Overview of the ABY framework [19] that allows efficient conversions between
Cleartexts and three types of sharings: Arithmetic, Boolean, and Yao.

PRACTICE D13.3 Page 7 of 51

The Full Set of New Protocols

2.4 Private Function Evaluation

2.4.1 Private Function Evaluation Using Universal Circuits
Universal circuits (UCs) can be programmed to evaluate any circuit up to a given size k. They
provide elegant solutions in various application scenarios, e.g. for private function evalua-
tion (PFE). The optimal size of a universal circuit is proven to be Ω(k log k). Valiant proposed
a size-optimized UC construction in [67], which has not been put in practice ever since. The
only implementation of universal circuits was provided by Kolesnikov and Schneider [44], with
size O(k log2 k).
Any computable function f(x) can be represented as a Boolean circuit with input bits x = (x1, . . . , xu).
Universal circuits (UCs) are programmable circuits, which means that beyond the u inputs, they
receive p = (p1, . . . , pm) program bits as further inputs. Using these program bits, the UC is
programmed to evaluate the function, such that UC (x, p) = f(x). The advantage is that one
can apply the same UC for computing different functions of the same size.
Efficient constructions considering both the size and the depth of the UC were proposed. The
approach that we revisit due to the below detailed application is the optimization of the size by
Valiant [67], resulting in a construction with asymptotically optimal size O(k log k) and linear
depth O(k), where k denotes the size of the simulated circuits.
The most prominent application of UCs is the evaluation of private functions based on secure
function evaluation (SFE) or secure two-party computation. SFE enables two parties P1 and P2
to evaluate a publicly known function f(x, y) on their private inputs x and y, ensuring that
none of the participants learns anything about the other participant’s input, and that both P1
and P2 learn the correct result. Many secure computation protocols use Boolean circuits for
representing the desired functionality, such as Yao’s garbled circuit protocol [46, 70] and the
GMW protocol [28]. In some applications the function itself should be kept secret. This
setting is called private function evaluation (PFE), where only one of the parties P1 knows the
function f(x), whereas the other party P2 provides the input to the private function. P2 learns
no information about f besides the size of the circuit defining the function and the number of
inputs and outputs.
PFE can be reduced to SFE [44] by securely evaluating a UC that is programmed by P1 to
evaluate the function f on P2’s input x. Thus, P1 provides the program bits for the UC and
P2 provides his private input x into an SFE protocol that computes a UC. The complexity of
PFE in this case is determined mainly by the complexity of the UC construction. The security
follows from that of the SFE protocol that is used to evaluate the UC. If the SFE protocol is
secure against semi-honest, covert or malicious adversaries, then the PFE protocol is secure in
the same adversarial setting. Further applications of UCs and PFE and related work can be
found in [39,40].

2.4.2 Valiant’s Universal Circuit Construction
In this section, we describe Valiant’s edge-universal graph construction for graphs for which
all nodes have at most one incoming and at most one outgoing edge and detail how two such
graphs can be used for constructing universal circuits [67].

Edge-Universal Graphs.

G = (V,E) is a directed graph with the set of nodes V = {1, . . . , n} and the set of edges
E ⊆ V × V . A directed graph has fanin or fanout ` if each of its nodes has at most ` edges

PRACTICE D13.3 Page 8 of 51

The Full Set of New Protocols

directed into or out of it, respectively. Γ`(n) denotes the set of all acyclic directed graphs with n
nodes and fanin and fanout `. Further on, we require a labelling of the nodes in a topological
order, i.e., i > j implies that there is no directed path from i to j. In a graph in Γ`(n) , a
topological ordering can always be found with computational complexity O(n+ `n).
An edge-embedding of graph G = (V,E) into G′ = (V ′, E ′) is a mapping that maps V into
V ′ one-to-one, with possible additional nodes in V ′, and E into directed paths in E ′, such
that they are pairwise edge-disjoint, i.e., an edge can be used only in one path. A graph
G′ is edge-universal for Γ`(n) if it has distinguished poles {p1, . . . , pn} ⊆ V ′ and every graph
G ∈ Γ`(n) with node set V = {1, . . . , n} can be edge-embedded into G′ by a mapping ϕG such
that ϕG : i 7→ pi and ϕG : (i, j) 7→ {path from pole pi to pole pj} for each i, j ∈ V .
Here, we recapitulate Valiant’s construction for acyclic edge-universal graph for Γ1(n), denoted
by Un, that has fewer than 2.5n log2 n nodes, fanin and fanout 2 and poles with fanin and
fanout 1. Valiant presents another edge-universal graph construction with a lower multiplicative
constant 2.375n log2 n. We omit that version of the algorithm for two reasons: firstly, our aim
is to show the practicality of Valiant’s approach and secondly, including all the optimizations
even in the simpler construction is a challenging task in practice. The more efficient algorithm
uses four subgraphs instead of two at each recursion and utilizes a skeleton with a more complex
structure. For more details on this improved algorithm, the reader is referred to [49, 67]. We
leave showing the practicality of the improved method as future work.

Valiant’s Edge-Universal Graph Construction of Size 2.5n log2 n for Γ1(n) Graphs:
The edge-universal graph for Γ1(n), denoted by Un, is constructed with poles {p1, . . . , pn} with
fanin and fanout 1, which are connected according to the skeleton shown in Figure 2.2. The
poles are emphasized as special nodes with squares, and the additional nodes are shown as
circles. The recursive construction works as follows: the nodes denoted by {q1, . . . , qdn−2

2 e
}

and {r1, . . . , rbn−2
2 c
} are considered as the poles of two smaller edge-universal graphs called

subgraphs Qdn−2
2 e

and Rbn−2
2 c

, respectively, that are otherwise not shown. Since they are poles
of the two subgraphs with such a skeleton but not of Un, they will have at most the allowed fanin
and fanout 2: they inherit one incoming and one outgoing edge from the outer skeleton, and
at most one incoming and one outgoing edge from the subgraph. Qdn−2

2 e
(and Rbn−2

2 c
) is then

constructed similarly: the skeleton is completed and two smaller graphs with sizes d d
n−2

2 e−2
2 e and

b d
n−2

2 e−2
2 c (and sizes d b

n−2
2 c−2

2 e and b b
n−2

2 c−2
2 c) are constructed. For starting off the recursion,

U1 is a graph with a single pole while U2 and U3 are graphs with two and three connected
poles, respectively. Valiant gives special constructions for U4, U5 and U6 and shows that it is
possible to obtain the respective edge-universal graphs with altogether 3, 7 and 9 additional
nodes, respectively, as shown in Figure 2.2.
We recapitulate the proof from [67] that Un is edge-universal for Γ1(n), such that any graph
with n nodes and fanin and fanout 1 can be edge-embedded into Un. According to the definition
of edge-embedding, it has to be shown that given any Γ1(n) graph G with set of edges E, for
any (i, j) ∈ E and (k, l) ∈ E we can find pairwise edge-disjoint paths from pi to pj and from
pk to pl in Un. As before, the labelling of nodes V = {1, . . . , n} in the Γ1(n) graph is according
to a topological order of the nodes.
Firstly, each two neighbouring poles of the edge-universal graph, p2s and p2s+1 for s ∈ {1, . . . , dn2 e},
are thought of as merged superpoles, with their fanin and fanout becoming 2. In a similar man-
ner, any G ∈ Γ1(n) graph can be regarded as a Γ2(dn2 e) graph with supernodes, i.e. each pair
(2s, 2s + 1) will be merged into one node in a Γ2(dn2 e) graph G′ = (V ′, E ′). If there are edges

PRACTICE D13.3 Page 9 of 51

The Full Set of New Protocols

q1 r1

p3

p4

q2 r2

q(n-2)/2 r(n-2)/2

 A

pn-1

pn

 B

p2

p1

(a) Un, n even

q1 r1

p3

p4

q2 r2

q(n-3)/2 r(n-3)/2

pn-2

pn-1

q(n-1)/2

 A

pn

 B

p2

p1

(b) Un, n odd

p1

 B

p2

p3

p4

(c) U4

p1

 B

p2

p3

p4

p5

 B

(d) U5

p1

 B

p2

p3

p4

p5

p6

 B

(e) U6

Figure 2.2: Skeleton of Valiant’s edge-universal graph and optimized cases.

PRACTICE D13.3 Page 10 of 51

The Full Set of New Protocols

between the nodes in G, they are simulated with loops.1 The set of edges of this graph G is
partitioned to sets E1 and E2, s.t. G1 = (V,E1) and G2 = (V,E2) are instances of Γ1(dn2 e) and
Γ1(bn2 c), respectively. This can be done efficiently, as shown later in this section. The edges
in E1 are embedded as directed paths in Q, and the edges in E2 as directed paths in R. Both E1
and E2 have at most one edge directed into and at most one directed out of any supernode and
therefore, there is only one edge from E1 and one from E2 to be simulated going through any
superpole in Un as well. Thus, the edge coming into a superpole (p2s, p2s+1) in E1 is embedded
as a path through qs−1, while the edge going out of the pole in E1 is embedded as a path through
qs in the appropriate subgraph. Similarly, the edges in E2 are simulated as edges through rs−1
and rs. These paths can be chosen disjoint according to the induction hypothesis. Finally, the
paths from qs−1 and rs−1 to superpole (p2s−1, p2s) as well as the paths from (p2s−1, p2s) to qs
and rs can be chosen edge-disjoint due to the skeleton shown in Figure 2.2. With this, Valiant’s
graph construction is a valid edge-universal graph construction with asymptotically optimal
size O(n log n), and depth O(n) [67].

Valiant’s Edge-Universal Graph Construction of Size 5n log2 n for Γ2(n) Graphs:
Given a directed acyclic graph G ∈ Γ2(n), the set of edges E can be separated into two distinct
sets E1 and E2, such that graphs G1 = (V,E1) and G2 = (V,E2) are instances of Γ1(n), having
fanin and fanout 1 for each node [67]. Given the set of nodes V = {1, . . . , n}, one constructs a
bipartite graph G = (V ,E) with nodes V = {m1, . . . ,mn,m

′
1, . . . ,m

′
n} and edges E such that

(mi,m
′
j) ∈ E if and only if (i, j) ∈ E. The edges of G and thus the corresponding edges of G

can be colored in a way that the result is a valid two-coloring. Having fanin and fanout at
most 2, such coloring can be found directly with the following method, used in the proof of
Konig-Hall theorem in [50]:

1: while There are uncolored edges in G do
2: Choose an uncolored edge e = (mi,m

′
j) randomly and color the path or cycle that

contains it in an alternating manner: the neighbouring edge(s) of an edge of the first color
will be colored with the second color and vice versa.

3: end while
This coloring can be performed in O(n) steps and it defines the edges in E1 and E2, s.t. E1
contains the edges colored with color one and E2 the ones with color two and G1 = (V,E1)
and G2 = (V,E2) (cf. [40]).
With this method, the problem of constructing edge-universal graphs for Γ2(n) can be reduced
to the Γ1(n) construction. After constructing two edge-universal graphs for Γ1(n) (i.e. Un,1 and
Un,2), their poles are merged and an edge-universal graph for Γ2(n) is obtained. The merged
poles now have fanin and fanout 2, since the poles of Un,1 and Un,2 previously had fanin and
fanout 1. E1 can then be edge-embedded using the edges of Un,1 and E2 using the edges of Un,2.

Universal Circuits.

We now describe how to construct UCs by means of Valiant’s edge-universal graph construction
for Γ2(n) graphs [67]. Our goal is to obtain an acyclic circuit built from special gates that
simulate any acyclic Boolean circuit with u inputs, v outputs and k gates. In the circuit, the
inputs of the gates are either connected to an input variable, to the output of another gate or
are assigned a fixed constant. Due to the nature of Valiant’s edge-universal graph construction,
we have two restrictions on the original circuit. Firstly, all the gates must have at most two

1We note that these G′ graphs are constructed from the original Γ1(n) graph G in order to define the correct
embedding. Therefore, they are not required to be acyclic.

PRACTICE D13.3 Page 11 of 51

The Full Set of New Protocols

inputs and secondly, the fanout of inputs and gates must be at most 2, i.e., each input of the
circuit and each output of any gate can only be the input of at most two later gates. This is
necessary in order to guarantee that the graph of the original circuit has fanin and fanout 2.
We note that the first restriction was present in case of the construction in [44] as well, but
the output of any input or any gate could be used multiple times. However, it was proven
in [67] that the general case, where the fanout of the circuit can be any integer m ≥ 2, can be
transformed to the special case when m ≤ 2. The algorithm places a binary tree of identity
gates in place of each gate with fanout larger than 2, following Valiant’s proposition: „Any
gate with fanout x+ 2 can be replaced by a binary fanout tree with x+ 1 gates” [67, Corollary
3.1]. These identity gates are so-called copy gates, each of them eliminating one from the extra
fanout of the original gate. The resulting circuit will have k∗ gates with k ≤ k∗ ≤ 2k+v, where
k denotes the number of gates and v the number of outputs in the circuit.
After this transformation, given a circuit C with u inputs, v outputs and k∗ gates with fanin
and fanout 2, the graph of C, denoted by GC consists of a node for each gate, input and output
variable and thus is in Γ2(u + v + k∗). The wires of circuit C are represented by edges in GC .
A topological ordering of the gates is chosen, which ensures that gate gi has no inputs that are
outputs of a later gate gj, where j > i. The inputs and the outputs can be ordered arbitrarily
within themselves as long as the inputs are kept before the topologically ordered gates and the
outputs after them. Even though the output nodes cause an overhead in Valiant’s UC, they
are required to fully hide the topology of the circuit in the corresponding universal circuit. If,
in the fanout-2 circuit, one can observe which gates provide the output of the computation, it
might reveal information about the structure of the circuit, e.g. how many times is the result
of an output gate used after being calculated. We ensure by adding nodes corresponding to
the outputs that the last v nodes in Uu+v+k∗ are the ones providing the outputs. We note that
our understanding of universal circuits here slightly differs from Valiant’s, since he constructs
Uu+k∗ [67].
Therefore, after obtaining GC a Γ2 edge-universal graph Uu+v+k∗ is constructed, into which GC

is edge-embedded. Valiant shows in [67] how to obtain the universal circuit corresponding to
Uu+v+k∗ and how to program it according to the edge-embedding of GC . Firstly, the first u poles
become inputs, the next k∗ poles are so-called universal gates, and the last v poles are outputs
in the universal circuit. A universal gate denoted by U(in1, in2; c0, c1, c2, c3), can compute any
function with two inputs in1 and in2 and four control bits c0, c1, c2 and c3 as in Equation 2.1.

out1 = U(in1, in2; c0, c1, c2, c3) = c0in1in2 ⊕ c1in1in2 ⊕ c2in1in2 ⊕ c3in1in2. (2.1)

The rest of the nodes of the edge-universal graph are translated into universal switches or X
gates, denoted by (out1, out2) = X(in1, in2; c) that are defined by one control bit c and return
the two input values either in the same or in reversed order as in Equation 2.2.

out1 = c in1 ⊕ c in2, out2 = c in1 ⊕ c in2. (2.2)

Since ABY uses the free-XOR optimization from [43], we construct universal gates and switches
with low ANDsize and ANDdepth given in Section 2.4.3. With the cost metric we consider, X
and Y gates have the same AND complexity, optimized in [43] and are obtained as

out1 = Y (in1, in2; c) = (in1 ⊕ in2)c⊕ in1

(out1, out2) = X(in1, in2; c) = (e⊕ in1, e⊕ in2) with e = (in1 ⊕ in2)c (2.3)

with ANDsize and ANDdepth of 1 for both universal switches. X gates are realized with one
additional XOR gate compared to Y gates. Our efficient implementation of generic universal

PRACTICE D13.3 Page 12 of 51

The Full Set of New Protocols

Algorithm 1 Supergraph(G)
Input: Γ1(n) graph G with set of nodes V = {1, . . . , n}
Output: Γ1(n) supergraph

1: Create a graph H with dn2 e − 1 nodes . H Γ2 graph (with possible loops)
2: if there exist an edge (i, j) in G and d j2e − 1 ≥ d i2e then
3: Add edge

(
d i2e, d

j
2e − 1

)
in H . each pair of nodes in G is one node in H

4: end if
5: Partition H into two Γ1 graphs G1 of size dn2 e − 1 and G2 of size bn2 c − 1 using Konig’s

theorem as in Section 2.4.2
. in odd case, the (e, dn2 e − 1) edge in H for arbitrary e will be added in G1

6: if size(G1) 6= 0 then
7: Supergraph(G1)
8: Store G1 as the left subgraph of G
9: end if

10: if size(G2) 6= 0 then
11: Supergraph(G2)
12: Store G2 as the right subgraph of G
13: end if
14: delete H
15: return G

gates uses Y gates yielding

out1 = U(in1, in2; c0, c1, c2, c3) = Y [Y (c0, c1; in2), Y (c2, c3; in2); in1] (2.4)

with ANDsize(U) = 3 and ANDdepth(U) = 2. This universal gate implementation is generic
and works in all secure computation protocols. However, for Yao’s garbled circuits protocol, one
can further optimize it to ANDsize(U) = ANDdepth(U) = 1, as in some garbling schemes such
as the garbled 3-row-reduction [54] the gate being evaluated remains oblivious to the evaluator.
The programming of the universal circuit means specifying the control bit of each universal
switch and the four control bits of each universal gate. The universal gates are programmed
according to the simulated gates in C and the universal switches according to the paths defined
by the edge-embedding of the graph of the circuit GC in the edge-universal graph Uu+v+k∗ .
Depending on if the path takes the same direction during the embedding (e.g. arrives from
the left and continues on the left) or changes its direction at a given node (e.g. arrives from
the left and continues on the right), the control bit of the universal switch can be programmed
accordingly.
In the following, we detail our concrete method for programming the universal circuit and
discuss efficient implementations of universal gates and switches. The Γ2 graph of the circuit
GC with n nodes is partitioned into two Γ1(n) graphs GC

1 and GC
2 which are embedded into

the two edge-universal graphs for Γ1(n) that build up Un. Valiant proved in [67] that for any
topologically ordered Γ1(n) graph, for any (i, j) ∈ E and (k, l) ∈ E edges there exist edge-
disjoint paths in Un between the ith and the jth poles and between the kth and the lth poles.
We described Valiant’s method in Section 2.4.2 and here we show the algorithm that uniquely
defines these paths in Un.
For the description of our algorithm, we first define a Γ1(n) supergraph, which is a Γ1(n) graph
with additionally a binary tree of Γ1 graphs of decreasing size. These Γ1 graphs uniquely define
the embedding of the edges into Un. When embedding an edge (i, j) of the topologically ordered

PRACTICE D13.3 Page 13 of 51

The Full Set of New Protocols

graph G into the edge-universal graph, one needs to construct the supergraph of G as described
in Algorithm 1 and then look at the binary tree in the supergraph. The path of the edge
(i, j) defines the edge-embedding uniquely. This means that if edge (d i2e, d

j
2e − 1) is in the

left subgraph of G, then it can be embedded through subgraph Q in Un, otherwise it is in the
right subgraph of G and can be embedded through subgraph R in Un. The unique embedding
happens through {rd i2 e, rd j2 e−1} or through {qd i2 e, qd j2 e−1}, utilizing the unique shortest path
between them, through subpoles further identified by smaller subgraphs of G.
The embedding of (i, j) is ready in one of the following three scenarios:

1. Leaf: there are no subgraphs in G anymore,

2. Superpole: d j2e − 1 < d i2e, and therefore (d i2e, d
j
2e − 1) cannot be found in any of the

supergraphs anymore, in which case i is odd and j = i+ 1, and the path between pi and
pi+1 in the skeleton as in Figures 2.2 goes directly through one switching node without
entering a subgraph, or

3. Subpole: d j2e−1 = d i2e and therefore is represented by a loop in a subgraph, in which case
i is even and j = i + 1, and the path between pi and pi+1 as in Figures 2.2 goes directly
through one subpole and two to four switching nodes. In this case, which subpole is used
is defined by the supergraph G.

When the embedding is done, for defining the control bits, each node x has at most two nodes
that have ingoing edges to x, one is represented as the left parent and one as the right parent
of x in the edge-universal graph. The two consecutive nodes are also saved as left and right
children of x. Now, when x is a switching node and we take edges (v, x) and (x,w) in the
path, we save for x if parent v and child w are on the same or on the opposite side in the
edge-universal graph. This defines the control bit of each universal switch in the translated
universal circuit, where left and right parent and child translate to first and second input and
output, respectively.

2.4.3 The Size and the Depth of Valiant’s UC
In this section, we obtain new formulae for the size and the depth of Valiant’s construction: for
the Γ1 edge-universal graph construction and for the universal circuit construction. The size of
the edge-universal graph is the number of nodes, counting all the poles and nodes created while
using Valiant’s construction. The depth of the edge-universal graph is the number of nodes on
the longest path between any two nodes. When considering UCs and the PFE application, since
XOR gates can be evaluated for free in secure computation [43], the ANDsize of the universal
circuit is the number of AND gates that are needed to realize the UC in total. The ANDdepth
of the universal circuit in this scenario is the maximum number of AND gates between any
input and output. For the sake of generality, we give the total size and depth of Valiant’s UC
construction with respect to both the AND and XOR gates that are used. Our implementation
of universal gates and switches is optimized for PFE (cf. [39]) and therefore uses the fewest AND
gates possible. However, the total size and depth can be relevant when optimizing for other
applications, in which case our implementation gives an upper bound that can be improved.
For instance, when XOR and AND gates have the same costs, one needs to minimize the total
number of gates instead of the number of AND gates.

PRACTICE D13.3 Page 14 of 51

The Full Set of New Protocols

 0

 1x106

 2x106

 3x106

 4x106

 5x106

 0 20000 40000 60000 80000 100000

nu
m

be
r

of
 n

od
es

 in
 th

e
ed

ge
-u

ni
ve

rs
al

 g
ra

ph

number of original nodes

Valiant's upper bound (4.15 x 106)
Our upper bound with only odd numbers (3.75 x 106)
Exact number of nodes (3.39 x 106)
Our lower bound with only even numbers (3.25 x 106)

Figure 2.3: Our upper and lower bounds for the size of Valiant’s edge-universal graph construc-
tion for Γ1(n) graphs, along with Valiant’s upper bound on the same construction and the exact
size Exact(n), considering the size of the embedded graph n ∈ {1, . . . , 100,000}.

The Size and the Depth of the Γ1 Edge-Universal Graph

In the skeleton for even n, node A in Figure 2.2 is redundant, since one can choose to embed
the edge (y, n − 1) as (py, pn−1) through Q, and (z, n) as (pz, pn) through R for any y and z
nodes [67]. Thus, the number of nodes other than poles Exact(n), for even n becomes

Exact(n) = 2 ·Exact
(
n− 2

2

)
+ 5 · n− 2

2 . (2.5)

For odd n, the construction makes use of n−1
2 poles in Q and n−3

2 poles in R. Then, edge (y, n)
is embedded as (py, pn) through Q for any y node, and node A is again redundant. Thus,

Exact(n) = Exact
(
n− 1

2

)
+ Exact

(
n− 3

2

)
+ 5 · n− 3

2 + 3. (2.6)

Using these recursive formulae, given the value n, it is possible to obtain the exact number
of nodes other than poles in Un. Valiant includes optimizations for starting off the recursion:
for 1, 2, 3, 4, 5 and 6 nodes; the respective number of additional nodes are 0, 0, 0, 3, 7 and 9 (cf.
Figure 2.2). Thus, a simple algorithm using dynamic programming based on the recursion
relations of Equations 2.5-2.6 yields the exact number of nodes other than the original n poles
that are created during the edge-universal graph construction. It depends on the parity of
the input n at each iteration and unfortunately does not yield a closed formula for the size of
Valiant’s edge-universal graph construction, which is n+ Exact(n).
Valiant states that using his method, an edge-universal graph for Γ1(n) can be found „with fewer
than 19

8 n log2 n nodes, and fanin and fanout 2 ” [67]. As mentioned in Section 2.4.2, we consider
the more detailed algorithm that yields the result with a slightly larger prefactor of 2.5n log2 n

PRACTICE D13.3 Page 15 of 51

The Full Set of New Protocols

-3

-2

-1

 0

 1

 2

 3

 0 20000 40000 60000 80000 100000

ra
tio

 in
 p

er
ce

nt
ag

e

number of original nodes

Figure 2.4: The deviation of the mean of our upper and lower bounds (Equation 2.7 and
Equation 2.8) from the exact size of the edge-universal graph Exact(n) + n, considering the
size of the embedded graph n ∈ {1, . . . , 100,000}.

instead of 2.375n log2 n. In this section, we sharpen this bound and give an approximate closed
formula for the size of the construction. We first give upper and lower bounds, and then derive
an approximation for a closed formula. For our lower bound, we consider the case when only
the formula for even numbers, i.e., Equation 2.5, is considered. This yields our lower bound of

n+ 5
log2 n−1∑

i=0
2i
(

n

2i+1 −
2(2i+1 − 1)

2i+1

) = 2.5n log2 n− 9n+ 5 log2 n+ 10. (2.7)

The upper bound can be obtained similarly, considering the case when only the formula for odd
numbers with 5 ·

(
n−1

2

)
is considered

n+ 5
log2 n−1∑

i=0
2i
(

n

2i+1 −
2i+1 − 1

2i+1

) = 2.5n log2 n− 4n+ 2.5 log2 n+ 5. (2.8)

Figure 2.3 depicts our upper and lower bounds along with Valiant’s upper bound on the same
construction for up to 100,000 nodes. We observe that the mean of our bounds is very close to
the exact number of nodes. Figure 2.4 shows that already after a couple of hundreds of poles,
it only slightly deviates from the exact number of nodes Exact(n). Thus, we accept

size(Un) ≈ 2.5n log2 n− 6.5n+ 3.75 log2 n+ 7.5 (2.9)

as a good approximation of the closed formula for the size of the construction, noting that an
estimated deviation of at most 2% compared to the exact number of nodes, i.e., ε ≤ 0.02·size(Un)
may occur.

PRACTICE D13.3 Page 16 of 51

The Full Set of New Protocols

The depth of the edge-universal graph, i.e., the maximum number of nodes between any two
nodes is defined by the number of nodes between p1 and pn in the skeleton (cf. Figure 2.2).
Thus, depth(Un) = 3n− 3 for even n and depth(Un) = 3n− 2 for odd n.

The Size and the Depth of Valiant’s UC

As described in Section 2.4.2, a universal circuit is constructed by means of an edge-universal
graph for graphs with fanin and fanout 2, which is in turn constructed from two Γ1 edge-
universal graphs with poles merged together and thus taken only once into consideration. When
constructing a UC, the number of inputs u, the number of outputs v and the number of
gates k is public. We set k∗ as the number of gates in the equivalent fanout-2 circuit, where
k ≤ k∗ ≤ 2k + v, in order to be able to later fairly compare with the UC construction of [44].
We consider k∗ as the public parameter instead of k, since without the knowledge of the original
number of simulated gates, it does not reveal information about the simulated circuit. If the
original k is public, one can hide k∗ by setting it to its maximal value 2k + v. Thus, using
Valiant’s UC construction, a Γ2 edge-universal graph with u+ v + k∗ poles is constructed and
thus, our approximative formula for the size of the Γ2 edge-universal graph corresponding to
the graph of the circuit would become 2 · size(Uu+v+k∗) − (u + v + k∗) and the exact number
would be u + v + k∗ + 2 · Exact(u + v + k∗), i.e., the u + v + k∗ merged poles of the two
edge-universal graphs plus the exact number of nodes other than poles. Therefore, the size of
Valiant’s UC is

size(UC Valiant
u,v,k∗) ≈ [5(u+ v + k∗) log2(u+ v + k∗)− 15(u+ v + k∗)

+ 7.5 log2(u+ v + k∗) + 15] · size(X) + k∗ · size(U) (2.10)

and the depth stays

depth(UC Valiant
u,v,k∗) ≈ [2(u+ v + k∗)− 2] · depth(X) + k∗ · depth(U). (2.11)

When transforming the Γ2 edge-universal graph into a UC, the first u poles are associated with
inputs, the last v poles with outputs, and the k∗ poles between are realized with universal
gates (cf. Equation 2.1) and their programming is defined by the corresponding gates in the
simulated circuit. The rest of the nodes of the edge-universal graph are translated into universal
switches (cf. Equation 2.2), whose programming is defined by the edge-embedding of the graph
of the circuit into the Γ2 edge-universal graph. Thus, the size and depth of Valiant’s UC can
be directly derived from the size of the Γ2 edge-universal graph. However, we include two
optimizations to obtain a smaller size of the UC. The first optimization improves already the
size of the edge-universal graph and the second optimization is applied when translating the
edge-universal graph into a UC description (cf. [39]).

1. Optimization for Input and Output Nodes: We observe that obviously circuit inputs
need no ingoing edges and circuit outputs need no outgoing edges. Therefore, since u, v
and k∗ are publicly known, we optimize by deleting nodes that become redundant while
canceling the edges going to the first u (input) and coming from the last v (output) nodes.
Depending on the parity of u, v and u+ v+ k∗, the number of redundant switching nodes
is u + v − 3 ± 1 in both Γ1 edge-universal graphs that build up the graph of the UC.
Therefore, we have, on average, 2(u + v − 3) redundant nodes, which number we use
in our calculations further on. This optimization also affects the depth by, on average,
u+ v − 3.

PRACTICE D13.3 Page 17 of 51

The Full Set of New Protocols

2. Optimization for Fanin-1 Nodes: We observe that in the skeleton of the Γ1 edge-universal
graph construction there is a fanin-1 node (denoted with B in Figures 2.2). Such fanin-1
nodes exist in the base-cases for a small number of poles as well (cf. Figure 2.2). These
nodes are important to achieve fanin and fanout 2 of each nodes in the graph, but can
be ignored and replaced with wires when translated into a circuit description, essentially
resulting in the same UC. According to Valiant’s construction, these gates would trans-
late into universal switches with one real input (and an other arbitrary one). Instead, we
translate each of them into two wires and therefore set the second input to the same as
the first one. Since at least one such node can be ignored in each subgraph when nodes
are translated into gates, this results in altogether around

2 ·
log2(u+v+k∗)−1∑

i=0
2i
− 1 = 2(u+ v + k∗)− 3 (2.12)

less gates for the two Γ1 edge-universal graphs. This improvement has no effect on the
depth of the construction.

Since both the size and the depth are dependent on the underlying representation of the circuit
building blocks (of the universal gate U and of the universal switch or X gate), and the secure
computation protocol, we express the size of the universal circuit with the size and depth of U
and of X as parameters. Including the above optimizations of altogether 4(u + v) + 2k∗ − 9,
the approximate formula for the size of Valiant’s optimized UC construction becomes

size(UC opt
u,v,k∗) ≈ [5(u+ v + k∗) log2(u+ v + k∗)− 17k∗ − 19(u+ v)

+ 7.5 log2(u+ v + k∗) + 24] · size(X) + k∗ · size(U). (2.13)

To obtain the exact size of the UC, we use the recursive relations depicted in Equations 2.5-2.6
and include our optimizations. Thus, the depth of the UC becomes

depth(UC opt
u,v,k∗) ≈ [u+ v + 2k∗ + 3] · depth(X) + k∗ · depth(U). (2.14)

Depending on the application, size(X) and size(U) as well as depth(X) and depth(U) can be
optimized. Due to the PFE application, where XOR gates can be evaluated for free, we assess
the ANDsize and ANDdepth of our AND-optimized implementations of universal gates and
switches (cf. [39]). In general, a universal gate can be realized with 3 AND gates (and 6 XOR
gates), and ANDdepth of 2 (total depth of 6). Universal switches can be realized with only one
AND gate (and 3 XOR gates), and ANDdepth of 1 (total depth of 3) [43].
For private function evaluation, the size and the depth of U can be further optimized depending
on the underlying secure computation protocol. In case the SFE implementation uses Yao’s
garbled circuit protocol [70], both ANDsize(U) and ANDdepth(U) can be minimized to 1,
due to the fact that in some garbling schemes the evaluator does not learn the type of the
evaluated gate such as in case of garbled 3-row-reduction [54]. Therefore, a universal gate can
be implemented with one 2-input non-XOR gate [57].

2.4.4 Comparison of Valiant’s UC for PFE with Other PFE Proto-
cols

Mohassel et al. in [52] design a generic framework for PFE and apply it to three different
scenarios: to the m-party GMW protocol [28], to Yao’s garbled circuits [70] and to arithmetic

PRACTICE D13.3 Page 18 of 51

The Full Set of New Protocols

Circuit u k v k∗ − k (k∗
k

) Valiant [44] OT-based [52]
AES-non-exp 256 31,924 128 14,539 (1.46) 1.150 · 107 2.797 · 107 6.243 · 106

AES-expanded 1,536 25,765 128 11,089 (1.43) 9.211 · 106 2.206 · 107 4.943 · 106

DES-non-exp 128 19,464 64 12,290 (1.63) 7.502 · 106 1.560 · 107 3.639 · 106

md5 512 43,234 128 22,623 (1.52) 1.700 · 107 3.995 · 107 8.681 · 106

add 32 64 187 33 58 (1.31) 35,512 55,341 19,939
comp 32 64 150 1 1 (1.01) 19,384 40,222 15,424
mult 32x32 64 6,995 64 5,079 (1.73) 2.522 · 106 4.647 · 106 1.184 · 106

Branching 18 72 121 4 3 (1.02) 17,312 30,994 11,994
CreditCheck 25 50 1 6 (1.12) 5,056 9,348 4,198
MobileCode 80 64 16 0 (1.00) 12,528 13,727 5,644

Table 2.1: The number of symmetric-key operations using different PFE protocols: Valiant’s
UC with SFE, the universal circuit construction from [44] or Mohassel et al.’s OT-based method
from [52]. u, v and k denote the number of inputs, outputs and gates in the simulated circuit,
and k∗ denotes the number of gates in the equivalent fanout-2 circuit.

circuits using homomorphic encryption [15]. Both the two-party version of their framework with
the GMW protocol and the solution with Yao’s garbled circuit protocol has two alternatives:
using homomorphic encryption they achieve linear complexity O(k) in the circuit size k and
when using a solution solely based on oblivious transfers (OTs), they obtain a construction
with O(k log k) symmetric-key operations. The OT-based construction in both cases is more
desirable in practice, since using OT extension the number of public-key operations can be
reduced significantly [2, 32].
Since the asymptotical complexity of this construction and using Valiant’s UC for PFE is the
same, we compare these methods for PFE. We revisit the formulas provided in [52] for the
PFE protocol based on Yao’s garbled circuits and elaborate on the number of symmetric-
key operations when the different PFE protocols are used. Mohassel et al. show that the
total number of switches in their framework is 4k log2(2k) + 1 that are evaluated using OT
extension, for which they calculate 8k log2(2k) + 8 symmetric-key operations together with 5k
operations for evaluating the universal gates with Yao’s protocol. We count only the work of the
party that performs most of the work, i.e., 4k symmetric-key operations for creating a garbled
circuit with k gates and 3 symmetric-key operations (two calls to a hash function and one call
to a pseudorandom function (PRF)) for each OT using today’s most efficient OT extension
of [2]. Hence, according to our estimations, the protocol of [52] requires 12 log2(2k) + 4k + 12
symmetric-key operations.
In the same way, we assume that in our case, for evaluating both the universal gates and
switches, the garbler needs 4k symmetric-key operations. Thus, for a fair comparison, we
essentially update Table 4 from the full version of [52, Appendix J.1], where Valiant’s UC size
was calculated with assumed k∗ = 2k + v, without calculating 4 operations for the garbling.
We took our example circuit files of varying size in Table 2.1 from two different sources and
elaborate on the resulting number of symmetric-key operations using the different constructions.
The first 7 circuits we obtained from the function set of [66] and the last three from the
FairplayPF extension of the Fairplay compiler [44, 51]. The example circuits that we took
from [66] had to be converted to our desired SHDL format, which was a necessary step in order
to be able to elaborate on the performance of these more complicated circuits as well. We
included the INV gates in the function table of the consecutive gate and therefore, resulted in
smaller gate numbers k for the equivalent SHDL circuits with arbitrary fanout. Then, these
SHDL circuits were considered as input circuits for our tool.

PRACTICE D13.3 Page 19 of 51

The Full Set of New Protocols

Circuit UC Compile UC I/O GMW Yao
Time Time Time Communic. Time Communic.
(ms) (ms) (ms) (KB) (ms) (KB)

AES-non-exp 2,909.2 6,331.2 5,522.08 137,561.13 2,349.35 88,417.61
AES-expanded 2,103.7 5,063.6 4,136.72 109,033.79 1,878.75 70,097.48
DES-non-exp 1,596.2 4,173.5 2,695.51 76,644.38 1,310.52 48,180.69
md5 4,043.5 8,785.4 7,041.12 169,558.83 3,547.68 110,043.59
add 32 11.4 63.8 31.97 457.77 26.49 224.77
comp 32 5.8 34.1 29.94 340.23 8.90 159.73
mult 32x32 328.9 1,443.2 1,092.46 31,053.53 539.98 18,741.85
Branching 18 4.8 31.4 26.23 307.77 17.34 145.87
CreditCheck 1.2 11.4 26.25 113.35 5.67 45.15
MobileCode 3.2 26.3 25.71 202.50 28.16 103.45

Table 2.2: Running time and communication for our UC-based PFE implementation with ABY.
We include the compile time, the I/O time of the UC compiler, and the evaluation time (in
milliseconds) and the total communication (in Kilobytes) between the parties in GMW as well
as in Yao sharing.

We now compare the size of the three two-party PFE protocols: the two UC-based PFE with
secure computation (Valiant’s UC [39] and [44]) and the OT-based method of [52]. We assess
our findings in Table 2.1. We note that our numbers are estimations, i.e., we do not consider
that [52] works with circuits made up solely of NAND gates. Since Valiant’s UC construction
depends also on the number of gates with fanout more than 2 in the original circuit, we include
the number of copy gates, (k∗ − k) in the table. We emphasize the ratio between the new
number of gates k∗ and the original number of gates k and conclude that in general circuits,
it is well below the maximal k∗

k
∼ 2. The size of the UC construction from [44] obviously

makes their method less efficient, in our examples using more than twice as many symmetric-
key operations as the method with Valiant’s UC and four times as many as Mohassel et al.’s
efficient OT-based method [52]. We conclude that universal circuits are not the most efficient
solution to perform PFE, however, we show the feasibility of generating and evaluating UCs
simulating large circuits. We emphasize that even though the PFE-specific protocol from [52]
achieves better results for PFE, universal circuits are generic and can be applied for various
other scenarios (cf. [39]), and the most efficient UC construction is Valiant’s construction.

Our Experimental Results.

We validated the practicality of Valiant’s universal circuit construction with an efficient imple-
mentation. We ran our experiments on two Desktop PCs, each equipped with an Intel Haswell
i7-4770K CPU with 3.5 GHz and 16 GB RAM, that are connected via Gigabit-LAN and give
our benchmarks in Table 2.2. We are able to generate UCs up to around 300,000 gates of the
simulated circuit, i.e., which results in billions of gates in the UC. Until now, the only implemen-
tation of universal circuits was given in [44], which is outperformed by Valiant’s construction
already for a couple of hundred gates due to its asymptotically larger complexity. We show the
real practicality of UCs through experimental results proving the efficiency of our implemen-
tation of PFE with the ABY framework [19]. Furthermore, due to its asymptotically smaller
depth, we are also able to evaluate our generated UCs with the GMW protocol [28], whereas
the construction from [44] was only evaluated with Yao’s garbled circuit protocol. We do not
directly compare our runtimes with the method of [52], since to the best of our knowledge, their
framework has not yet been implemented.

PRACTICE D13.3 Page 20 of 51

The Full Set of New Protocols

Converting from circuit descriptions and writing into and reading out from files slows down the
program significantly, but it still achieves good performance for practical circuits such as AES
and DES. Our implementation in ABY can evaluate most of the circuits in both the GMW
and Yao’s protocols, but for some examples it runs out of memory (e.g. SHA-256). However,
improvements on SFE protocols imply improvements on UC-based PFE frameworks as well. As
can be seen in Table 2.2, the evaluation time and the communication in case of Yao’s garbled
cirucit protocol is about a factor of two smaller than that of the GMW protocol. This difference
is due to the more efficient universal gate construction with only one gate for the case of Yao’s
protocol in contrast to the universal gates used in the GMW protocol with ANDsize = 3 and
ANDdepth = 2.

2.5 TinyTable Secure Two-Party Computation
We proposed a new protocol, nicknamed TinyTable [16], for maliciously secure 2-party compu-
tation in the preprocessing model. One version of the protocol is useful in practice and allows,
for instance, secure AES encryption with latency about 1ms and amortized time about 0.5 µs
per AES block on a fast cloud set-up. Another version is interesting from a theoretical point of
view: we achieve a maliciously and unconditionally secure 2-party protocol in the preprocessing
model for computing a Boolean circuit, where both the communication complexity and prepro-
cessed data size needed is O(s) where s is the circuit size, while the computational complexity is
O(kεs) where k is the statistical security parameter and ε < 1 is a constant. For general circuits
with no assumption on their structure, this is the best asymptotic performance achieved so far
in this model.
The idea of the protocol is to implement each (non-linear) gate by a scrambled version of its
truthtable. Players will do look-ups in the tables using bits that are masked by uniformly
random bits that are chosen in the preprocessing phase together with the tables. This first
version of our protocol has data and communication complexity O(s) and computational com-
plexity O(ks). Although this is asymptotically inferior to previous protocols when counting
elementary bit operations, it works much better in practice: XOR and NOT gates require no
communication, and for each non-linear gate, each player sends and receives 1 bit and XORs
1 word from memory into a register. This means that TinyTable saves a factor of at least 2
in communication in comparison to standard passively secure protocols in the preprocessing
model, such as GMW with precomputed OT’s or the protocol using circuit randomization via
Beaver-triples.
We implemented a version of this protocol that was optimised for AES computation, by using
tables for each S-box. This is more costly in preprocessing but, compared to a Boolean circuit
implementation, it reduces the round complexity of the on-line phase dramatically (to about
10).

Construction for passive security
Let C be a Boolean circuit with fan-in 2 gates denoted G1, . . . , GN and let w1, . . . , wW be the
wires. The gates are fixed in an order that allows the circuit to be evaluated gate by gate, such
that the output gates come last, and such that when we are about to evaluate gate i, its inputs
have already been computed. We call the wires coming out of the output gates output wires
and assume for simplicity that both parties are to learn the output.
We first specify a functionality for preparing preprocessing material that will allow computation
of the circuit with semi-honest security, see Fig. 2.5.

PRACTICE D13.3 Page 21 of 51

The Full Set of New Protocols

Preprocessing Functionality F presem.

1. On input C from both players, do the following: For each wire wu, choose a random masking
bit ru. This bit will be used to mask the bit bu that will actually be on wu when we do the
computation, i.e., eu = bu ⊕ ru will become known to the players. If wu is an input wire,
give ru to the player who owns wu.

2. For each gate Gi, with input wires wu, wv and output wire wo, we will construct two tables
Ai, Bi each with 4 entries, indexed by bits (c,d). This is done as follows: for each of the 4
possible values of bits (c, d), do:

(a) If both player are honest, choose a random bit sc,d. Otherwise take sc,d as input from
the adversary. Let Gi(·, ·) denotes the function computed by gate Gi.

(b) If both parties are honest, or if A is corrupt, set
Ai[c,d] = sc,d and Bi[c,d] = sc,d ⊕ (ro ⊕Gi(c⊕ ru, d⊕ rv)).

(c) If B is corrupt, set
Bi[c,d] = sc,d and Ai[c,d] = sc,d ⊕ (ro ⊕Gi(c⊕ ru, d⊕ rv)).

3. For each gate Gi, hand Ai to player A and Bi to player B. For each output wire wu, send
ru to both players.

Figure 2.5: Functionality for preprocessing, semi-honest security.

The idea behind the construction of the tables is that when the time comes to compute gate
Gi, both players will know “encrypted bits” eu = bu ⊕ ru and ev = bv ⊕ rv, for the input wires,
where bu,bv are the actual “cleartext” bits going into Gi, and ru, rv are random masking bits
that are chosen in the preprocessing. In addition, the preprocessing sets up two tables Ai, Bi

for each gate, one held by party A and one held by party B. These tables are used to get hold
of a similar encrypted bit for the output wire: eo = bo ⊕ ro, where bo = Gi(bu, bv). This works
because the tables are set up such that Ai[eu,ev], Bi[eu,ev] is an additive sharing of bo⊕ ro, i.e.,

Ai[bu ⊕ ru,bv ⊕ rv]⊕Bi[bu ⊕ ru,bv ⊕ rv] = bo ⊕ ro .

These considerations lead naturally to the protocol for computing C securely shown in Fig 2.6.

Protocol πsem.

1. A and B send C as input to F and get a set of tables {Ai, Bi| i = 1 . . . N}, as well as a bit
bu for each input wire wu.

2. For each input wire wu, if A holds input xu for this wire, send eu = xu⊕ bu to B. If B holds
input xu, send eu = xu ⊕ bu to A.

3. For i = 1 to N , do: Let Gi have input wires wu, wv and output wire wo (so that eu, ev
have been computed). A sends Ai[eu,ev] to B, and B sends Bi[eu,ev] to A. Set eo =
Ai[eu,ev]⊕Bi[eu,ev].

4. The parties output the bits {eo ⊕ ro| wo is an output wire}.

Figure 2.6: Protocol for semi-honest security.

PRACTICE D13.3 Page 22 of 51

The Full Set of New Protocols

Chapter 3

Tools with Improved Efficiency

3.1 Simple and Efficient Oblivious Transfer (short de-
scription)

This section is based on [14]. The complete description of this work appears in deliverable
D13.1.
Oblivious Transfer (OT) is a cryptographic primitive defined as follows: in its simplest flavour,
1-out-of-2 OT, a sender has two input messages M0 and M1 and a receiver has a choice bit
c. At the end of the protocol the receiver is supposed to learn the message Mc and nothing
else, while the sender is supposed to learn nothing. Perhaps surprisingly, this extremely simple
primitive is sufficient to implement any cryptographic task [38]. OT is also one of the main
building blocks in most secure-two party computation protocol such as Yao’s garbled circuits,
the GMW protocol etc.
This work designed a novel, extremely simple, efficient and secure OT protocol, which is a
simple tweak of the celebrated Diffie-Hellman (DH) key exchange protocol. Given a group G

Sender Receiver
Input: (M0,M1) Input: c
Output: none Output: Mc

a← Zp b← Zp
A = ga

-

if c = 0: B = gb

if c = 1: B = Agb

� B

k0 = H (Ba) kR = H(Ab)
k1 = H

((
B
A

)a)
e0 ← k0 ⊕ (M0 ◦ 0k)
e1 ← k1 ⊕ (M1 ◦ 0k)

-

(Mc,τ) = kR ⊕ ec
Output MC if τ = 0k

Figure 3.1: Our protocol in a nutshell

PRACTICE D13.3 Page 23 of 51

The Full Set of New Protocols

and a generator g, the DH protocol allows two players Alice and Bob to agree on a key as
follows: Alice samples a random a, computes A = ga and sends A to Bob. Symmetrically Bob
samples a random b, computes B = gb and sends B to Alice. Now both parties can compute
gab = Ab = Ba from which they can derive a key k. The key observation is now that Alice can
also derive a different key from the value (B/A)a = gab−a

2 , and that Bob cannot compute this
group element (assuming that the computational DH problem is hard).
We can now turn this into an OT protocol by letting Alice play the role of the sender and Bob
the role of the receiver (with choice bit c) as shown in Figure 3.1. The first message (from
Alice to Bob) is left unchanged (and can be reused over multiple instances of the protocol) but
now Bob computes B as a function of his choice bit c: if c = 0 Bob computes B = gb and if
c = 1 Bob computes B = Agb. At this point Alice derives two keys k0,k1 from (B)a and (B/A)a
respectively. It is easy to check that Bob can derive the key kc corresponding to his choice bit
from Ab, but cannot compute the other one. This can be seen as a random OT i.e., an OT
where the sender has no input but instead receives two random messages from the protocol,
which can be used later to encrypt his inputs.
Combining the above random OT protocol with the right symmetric encryption scheme (e.g., a
robust encryption scheme) achieves security in a strong, simulation based sense and in particular
the protocol can be proven UC-secure against active and adaptive corruptions in the random
oracle model.

3.2 Actively Secure Oblivious Transfer Extension (short
description)

This section is based on [4]. The complete description of this work appears in deliverable D13.1.
Oblivious Transfer (OT) is a cryptographic primitive that is fundamental for secure computa-
tion. In an 1-out-of-2 OT, a sender PS holds a pair of n-bit strings (x0, x1) of which a receiver PR
with choice bit r wants to obtain xr such that PS does not learn r and PR gains no information
about x1−r.
It has been proven that OT can not be based on one-way functions alone [30] and hence
computing an OT requires public-key cryptography. However, public-key cryptography is very
costly and many applications in secure computation typically require millions up to billions of
OTs, so getting efficient OT is of high importance. In [6] it was shown that a small number of real
base-OTs, that were computed using OT protocols based on expensive public-key cryptography,
can be extended to an arbitrarily large number of OTs using efficient symmetric cryptography
only. Due to their nature, these protocols are called OT extension protocols.
While the feasibility result of [6] was still costly in concrete terms, the work of [31] showed how to
extend OTs at a relatively low cost. The main protocol that was introduced was secure against
passive (or semi-honest) adversaries, which try to learn as much information as possible but
honestly follow the protocol description. An extension for security against active (or malicious)
adversaries, which can arbitrarily deviate from the protocol description, was also given but
incurred a huge cost overhead (around factor 40 compared to the passively secure variant).
Several follow-up works reduced the cost for both the passively- and actively secure variants of
the protocol. One of these works is [4], which reduced the cost overhead of the active secure
protocol over the passive secure protocol to factor 1.4.

PRACTICE D13.3 Page 24 of 51

The Full Set of New Protocols

3.3 Improved Actively Secure Oblivious Transfer Exten-
sion

This section is a continuation of Section 3.2, which was also part of deliverable D13.1 [36], and
where the active secure OT extension protocol of [4] was described. In this section we detail
recent improvements of oblivious transfer (OT) extension protocols.
In regular OT protocols, such as Protocol 1 in §3.2 in D13.1), the sender PS holds two messages
of which the receiver PR obliviously obtains one. (For completeness, we describe this protocol
in Fig 1.)
In the following section, which was published in [3], we present further optimizations that are
specifically tailored to the use of OT extensions in secure computation protocols summarized
in Table 3.1: Correlated OT (Section 3.3.1), Sender Random OT (Section 3.3.2), Receiver
Random OT (Section 3.3.3), and Random OT (Section 3.3.4). We first give the intuition and
overview of the functionalities and then present a formal definitions and proofs of security.

Protocol Applicability PR → PS PS → PR H
Original [21]+[31] All applications m` 2mn CR
C-OT Section 3.3.1 x0

j random; x1
j correlated with ∆j m` mn RO

SR-OT Section 3.3.2 x0
j , x

1
j random, rj chosen m` 0 RO

RR-OT Section 3.3.3 x0
j , x

1
j chosen, rj random m(`− 1) 2mn RO

R-OT Section 3.3.4 x0
j , x

1
j , rj random m(`− 1) 0 RO

Table 3.1: Bits sent for sender PS and receiver PR for m 1-out-of-2 OT extensions of n-bit
strings and security parameter κ for the semi-honest OT extension protocol of [31] with our
optimizations.

3.3.1 Correlated OT (C-OT)
When performing OT extension, often the sender does not need to transfer two independent
n-bit strings (x0

j , x
1
j). In some protocols, x0

j and x1
j only need to be correlated by a value ∆j

and a correlation function f∆j
, while one of the two strings can be constant and publicly known

or random. For instance, the Private Set-Intersection protocol of [20] fixes x0
j = 0 and transfers

only x1
j (hence, we can set ∆j = x1

j and f∆j
(x0

j) = ∆j) and the Hamming Distance Protocol
of [12] requires a random x0

j and a correlated x1
j = f∆j

(x0
j) = x0

j + ∆j. We can alter the
functionality of our OT extension protocols to compute correlated OT as follows. Since x0

j is
just a random value, PS can set x0

j = H(j,qj) and x1
j = f∆j

(x0
j) and can send the single value

yj = x1
j ⊕H(j,qj ⊕ s). PR defines its output as H(j,tj) if rj = 0 or as yj ⊕H(j,tj) if rj = 1.

For OT on n-bit strings, we thereby reduce the communication from PS to PR from 2n + ` to
n+ ` per OT.

Defining the functionality. The input x0
j of the sender is implicitly defined by the protocol.

Nevertheless, the sender may choose x1
j in any arbitrarily way, including as an arbitrary function

of x0
j . That is, in the protocol the sender has the freedom to choose x1

j as a function of x0
j .

When defining the corresponding functionality, we need to model this fact. As a result, the
functionality C-OT is defined as a reactive functionality, where the functionality chooses x0

j at
random, gives it to the sender, and then the sender replies with its choice for x1

j . We proceed
with a formal description of the functionality (Functionality 1), the protocol (Protocol 2) and
its proof of security (Theorem 3.3.1).

PRACTICE D13.3 Page 25 of 51

The Full Set of New Protocols

PROTOCOL 1 (Active secure OT extension protocol of [4].)

• Input of PS: m pairs (x0
j , x

1
j) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m selection bits r = (r1, . . . ,rm).

• Common Input: Symmetric security parameter κ and statistical security parameter ρ. It is
assumed that the number of base-OTs is ` = κ+ ρ.

• Oracles and cryptographic primitives: The parties use an ideal ` × OTκ func-
tionality, which computes ` OTs on κ-bit input values, pseudorandom generator
G : {0, 1}κ → {0, 1}m, and random-oracle H.

1. Initial OT Phase:

(a) PS initializes a random vector s = (s1, . . . ,s`) ∈ {0, 1}` and PR chooses ` pairs of
seeds k0

i ,k1
i each of size κ.

(b) The parties invoke the `×OTκ-functionality, where PS acts as the receiver with input s
and PR acts as the sender with inputs (k0

i ,k1
i) for every 1 ≤ i ≤ `.

For every 1 ≤ i ≤ `, let ti = G(k0
i). Let T = [t1| . . . |t`] denote the m× ` bit matrix where its

ith column is ti for 1 ≤ i ≤ `. Let tj denote the jth row of T for 1 ≤ j ≤ m.

2. OT Extension Phase (Part I):

(a) PR computes ti = G(k0
i) and ui = ti⊕G(k1

i)⊕r, and sends ui to PS for every 1 ≤ i ≤ `.

3. Consistency Check of r:

(a) For every pair α,β ⊆ [`]2, PR defines the four values:

h0,0
α,β = H(G(k0

α)⊕G(k0
β)) h0,1

α,β = H(G(k0
α)⊕G(k1

β)) ,

h1,0
α,β = H(G(k1

α)⊕G(k0
β)) h1,1

α,β = H(G(k1
α)⊕G(k1

β)) .

It then sends Hα,β = (h0,0
α,β , h

0,1
α,β , h

1,0
α,β , h

1,1
α,β) to PS .

(b) For every pair α,β ⊆ [`]2, PS knows sα,sβ ,ksαα ,k
sβ
β ,uα,uβ and checks that:

i. hsα,sβα,β = H(G(ksαα)⊕G(ksββ)).

ii. hsα,sβα,β = H(G(ksαα)⊕G(ksββ)⊕ uα ⊕ uβ) (= H(G(ksαα)⊕G(ksββ)⊕ rα ⊕ rβ)).
iii. uα 6= uβ .

In case one of these checks fails, PS aborts and outputs ⊥.

4. OT Extension Phase (Part II):

(a) For every 1 ≤ i ≤ `, PS defines qi = (si · ui)⊕G(ksii). (Note that qi = (si · r)⊕ ti.)
(b) Let Q = [q1| . . . |q`] denote the m × ` bit matrix where its ith column is qi. Let qj

denote the jth row of the matrix Q. (Note that qi = (si · r)⊕ ti and qj = (rj · s)⊕ tj .)
(c) PS sends (y0

j , y
1
j) for every 1 ≤ j ≤ m, where:

y0
j = x0

j ⊕H(j,qj) and y1
j = x1

j ⊕H(j,qj ⊕ s)

(d) For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, tj).

5. Output: PR outputs (xr1
1 , . . . ,x

rm
m); PS has no output.

PRACTICE D13.3 Page 26 of 51

The Full Set of New Protocols

FUNCTIONALITY 1 (The Correlated OT Functionality C-OT)

1. PR sends its input r = (r1, . . . ,rm).

2. The functionality chooses m random n-bit strings x0
1, . . . ,x

0
m and sends them to PS .

3. PS sends x1
1, . . . ,x

1
m to the functionality.

4. PR gets as output xr1
1 , . . . ,x

rm
m .

PROTOCOL 2 (Implementing Correlated OT (C-OT))
We follow Protocol 1 in §3.2 in D13.1, where the sender has input f∆1 , . . . ,f∆m

instead of
(x0

1,x
1
1), . . . ,(x0

m,x
1
m). In Step 4 (c), we have the following modification:

1. PS defines x0
j = H(j,qj) and x1

j = f∆j
(x0
j).

2. PS sends yj for every 1 ≤ j ≤ m, where: yj = x1
j ⊕H(j,qj ⊕ s) .

3. For 1 ≤ j ≤ m, PR computes xj = H(j,tj) if rj = 0, and xj = yj ⊕H(j,tj) otherwise.

Output: PS outputs (x0
1,x

1
1), . . . ,(x0

m,x
1
m), PR outputs r.

Theorem 3.3.1 Assuming that H is a programmable random oracle and G is a pseudorandom
generator, then Protocol 2 securely computes the C-OT functionality (Functionality 1) in the
`×OTκ-hybrid model in the presence of a static malicious adversary.

Proof Sketch: We sketch the simulator and the proof, and relate to the full proof of the
protocol [3].

The case of corrupted Sender. The case of corrupted sender here is more subtle than the
proof of the general protocol, and the functionality is now a reactive one. Moreover, we prove
security in the programmable random oracle model.
The simulator chooses a random input r and follows the execution of the protocol with the
corrupted sender and with an honest receiver with input r. Specifically, the adversary first
outputs a vector s of size `. The simulator chooses random {k0

i ,k1
i }`i=1 and sends them back to

the adversary, together with the ui messages and the necessary checks Hα,β, all set according
to the protocol specifications. Note that this determines the matrices T and Q.
The simulator then receives the inputs x0

1, . . . ,x
0
m from the trusted party, and it programs the

random oracle H such that for every 1 ≤ j ≤ m, H(j,qj) = x0
j and chooses random output

for H(j,qj ⊕ s). In case the adversary has already queried H for one of these values before
the simulator programs it, the simulator fails. The simulator receives from the adversary the
messages y1, . . . ,ym, defines for every 1 ≤ j ≤ m the input x1

j = yj ⊕ H(j,qj ⊕ s), and sends
the inputs x1

1, . . . ,x
1
m to the trusted party.

Clearly, the probability that the adversary that makes at most q queries toH(j,qj) orH(j,qj⊕s)
before it receives the messages u1, . . . ,u` is bounded by q · 2−`, and therefore the probability
that the simulation fails is bounded by this amount.

The case of corrupted Receiver. The simulator is the same as in Theorem 5.2 in [3],
where in the last step, instead of sending to the adversary the two messages y0

j ,y
1
j , it sends

only y1
j . Note that if no critical query then the input x1−rj

j is hidden from the adversary or

PRACTICE D13.3 Page 27 of 51

The Full Set of New Protocols

the distinguisher. Specifically, in case rj = 0, the value tj = qj and therefore H(j,qj ⊕ s) is
distributed uniformly, and the value yj = x1

j ⊕ H(j,qj ⊕ s) is distributed uniformly as well.
In case rj = 1 it holds that tj = qj ⊕ s, which implies that x0

j = H(j,qj) = H(j,tj ⊕ s) is
distributed uniformly and hidden from the adversary.

3.3.2 Sender Random OT (SR-OT)
When using OT extensions for implementing the OT-based Private Set Intersection (PSI) pro-
tocol of [58, 60], the efficiency can be improved even further. In this case, the inputs for PS
in every OT are independent random strings m0 and m1. Thus, the sender can allow the OT
extension protocol (functionality) Sender Random OT (SR-OT) to determine both of its inputs
randomly. This is achieved in the OT extension protocol by having PS define m0 = H(j,qj)
and m1 = H(j,qj ⊕ s). Then, PR computes mrj just as H(j,tj). With this optimization, we
obtain that the entire communication in the OT extension protocol consists only of the ini-
tial base-OTs, together with the messages u1, . . . ,uκ, and there are no yj messages. This is a
dramatic improvement of bandwidth. In particular, for the OT-PSI protocol of [58, 60], which
performs O(nσ) OTs on ρ + 2 log2(n) bit-strings, where n is the number of elements in both
parties’ sets, σ is the bit-length of each element, and ρ is the statistical security parameter, the
communication from PS to PR is reduced from O(nσ) to O(n).

Formal description of the functionality. We proceed with a formal description of the func-
tionality (Functionality 2), the protocol (Protocol 3) and its proof of security (Theorem 3.3.2).

FUNCTIONALITY 2 (Sender Random OT)

• Input: PS holds no input, PR holds r = (r1, . . . ,rm).

• The functionality: The functionality chooses m pairs of random strings of size n
each, (x0

1,x
1
1), . . . ,(x0

m,x
1
m).

• Output: PS outputs (x0
1,x

1
1), . . . ,(x0

m,x
1
m). PR outputs (xr1

1 , . . . ,x
rm
m).

PROTOCOL 3 (Implementing Sender Random OT (SR-OT))
We follow Protocol 1 in §3.2 in D13.1, where the sender does not have any input. In Steps 4 (c) and
4 (d), we have the following modification:

1. PS defines x0
j = H(j,qj) and x1

j = H(j,qj ⊕ s) for every 1 ≤ j ≤ m.

2. PR defines xrjj = H(j,tj) for every 1 ≤ j ≤ m. Note that there is no interaction between the
parties in this step.

Output: The sender outputs (x0
j ,x

1
j), the receiver outputs xrjj .

Theorem 3.3.2 Assuming that H is a programmable random oracle, G is a pseudorandom
generator, Protocol 3 securely computes the SR-OT functionality (Functionality 2) in the ` ×
OTκ-hybrid model in the presence of a static malicious adversary.

Proof Sketch:

PRACTICE D13.3 Page 28 of 51

The Full Set of New Protocols

The case of corrupted Sender. We prove security in the programmable random oracle
model.
The simulator chooses a random input r and follows the execution of the protocol with the
corrupted sender and with an honest receiver with input r. Specifically, the adversary first
outputs a vector s of size `. The simulator chooses random {k0

i ,k1
i }`i=1 and sends them back to

the adversary, together with the ui messages and the necessary checks Hα,β, all set according
to the protocol specifications. Note that this determines the matrices T and Q.
The simulator then receives the inputs (x0

1,x
1
1), . . . ,(x0

m,x
1
m) from the trusted party, and it

programs the random oracle H such that for every 1 ≤ j ≤ m, H(j,qj) = x0
j and H(j,qj ⊕ s) =

x1
j .

The case of corrupted Receiver. The simulator is the same as in Theorem 5.2 in [3],
where the only modification is that the simulator does not send the receiver any message in the
transfer phase. Assuming that the receiver or the distinguisher do not make any critical query,
the value H(j,tj ⊕ s) is hidden and distributed uniformly. In case where rj = 0, this value is
x1
j and in case where rj = 1, it is x0

j . The theorem follows.

3.3.3 Receiver Random OT (RR-OT)
Analogously to the Sender Random OT, in the Receiver Random OT (RR-OT), PR obtains his
input choice bits r as random output of the protocol execution. Our instantiation of RR-OT
in OT extension allows PR to save one bit of communication per OT. Recall that in Step 2(a)
in Protocol 1 in §3.2 in D13.1, PR sends ui = G(k0

i)⊕G(k1
i)⊕ r for 1 ≤ i ≤ `. However, if we

allow r to be randomly chosen, we can set r = G(k0
1) ⊕ G(k1

1) and t1 = G(k0
1) and only need

to transfer ui′ = G(k0
i′)⊕G(k1

i′)⊕ r for 2 ≤ i′ ≤ `. PS can then compute q1 = G(ks1
1) and, as

before, qi′ = (si′ ·ui
′)⊕G(ksi′i′). Thereby, the communication from PR to PS is reduced by one

bit per OT.
We proceed with a formal description of the functionality (Functionality 3), protocol (Proto-
col 4) and its proof of security (Theorem 3.3.3).

FUNCTIONALITY 3 (The Receiver Random OT Functionality (RR-OT))

• Input: PS holds m pairs (x0
1,x

1
1), . . . ,(x0

m,x
1
m) of n-bit strings.

• In case of corrupted receiver: PR sends m-bits r = (r1, . . . ,rm) to the functional-
ity.

• In case of honest receiver: PR has not input. The functionality chooses m random
bits r = (r1, . . . ,rm).

• Output: PS has no output; PR outputs (xr1
1 , . . . ,x

rm
m) and r.

Theorem 3.3.3 Assuming that H is a random oracle, G is a pseudorandom generator, Proto-
col 4 securely computes the RR-OT functionality (Functionality 3) in the `×OTκ-hybrid model
in the presence of a static malicious adversary.

Proof Sketch: Note that the random oracle does not have to be programmable. Regarding
correctness, for every 2 ≤ i ≤ ` it holds that qi = ti ⊕ (si · r). For i = 1, if s1 = 0 then
q1 = G(k0

1) = ti; in case s1 = 1 then q1 = G(k1
1) = G(k0

1) ⊕ r = ti ⊕ r, and therefore
q1 = t1 ⊕ (s1 · r) as well.

PRACTICE D13.3 Page 29 of 51

The Full Set of New Protocols

PROTOCOL 4 (Implementing Receiver Random OT (RR-OT))
We follow Protocol 1 in §3.2 in D13.1 with the following modifications:

1. PR has no input.

2. Given the chosen keys {k0
i ,k1

i }`i=1, PR sets r = G(k0
1)⊕G(k1

1).

3. For every 2 ≤ i ≤ `, PR sets ui = G(k0
i)⊕G(k1

i)⊕ r, and sends u2, . . . ,u` to PS . Note that
u1 is not sent.

4. In case of our actively secure OT extension protocol, the parties check consistency as previ-
ously.

5. PR defines T = [t1 | . . . | t`] where ti = G(k0
i) for every 1 ≤ i ≤ ` as in Protocol 1 in §3.2 in

D13.1.

6. PS defines Q = [q1 | . . . | q`] where q1 = G(ks1
1), and for every 2 ≤ i ≤ `, qi is defined as in

Protocol 1 in §3.2 in D13.1, i.e., qi = G(k0
i) if si = 0; otherwise, set qi = ui ⊕G(k1

i).

7. The parties proceed with the execution as in Protocol 1 in §3.2 in D13.1.

The case of corrupted sender. The simulator is exactly the same as in Theorem 5.2 in [3],
i.e., the simulator chooses a random r′ and plays the role of an honest receiver with input r′.
There is no contradiction between the simulated execution (where the input of the receiver is r′)
and the actual value r chosen by the trusted party, for the same reasons that the simulator in
Theorem 5.2 in [3] succeeds with the simulation for some random input r′ whereas the receiver
uses its true input r to the trusted party.

The case of corrupted receiver. The only difference is that the simulator sends the
messages u2, . . . ,u` (excluding u1). In particular, the input r that the simulator extracts is the
most repeated ri value according to the messages u2, . . . ,u`, and define r1 as G(k0

i) ⊕ G(k1
i).

The theorem follows from the correctness argument as above, and Theorem 5.2 in [3].

3.3.4 Random OT (R-OT)
In a random OT, both PS and PR obtain their input as random output of the protocol. The
random OT functionality can be obtained by combining the SR-OT protocol with the RR-OT
protocol. Random OT can be used in the GMW protocol when pre-computing random multi-
plication triples [2]. We proceed with a formal description of the functionality (Functionality 4),
the protocol (Protocol 5) and its proof of security (Theorem 3.3.4).

FUNCTIONALITY 4 (Functionality Random OT R-OT)

• Inputs: PS has no input, and the functionality chooses m pairs of n-bit strings
(x0

1,x
1
1), . . . ,(x0

m,x
1
m).

• In case of corrupted receiver: PR sends m-bits r = (r1, . . . ,rm) to the functional-
ity.

• In case of honest receiver: PR has no input. The functionality chooses m random
bits r = (r1, . . . ,rm).

• Output: PS outputs (x0
1,x

1
1), . . . ,(x0

m,x
1
m). PR outputs (xr1

1 , . . . ,x
rm
m) and r.

PRACTICE D13.3 Page 30 of 51

The Full Set of New Protocols

PROTOCOL 5 (Implementing Random-OT R-OT)
This is a simple combination of Protocols 3 and 4. Specifically, PR defines its input as G(k0

1)⊕G(k1
1),

and PS defines its inputs x0
j ,x

1
j according to H(j,qj), H(j,qj ⊕ s), respectively, for every 1 ≤ j ≤ m.

There is no transmission of u1 from PR to PS , and there is no transmission of y0
j ,y

1
j from PS to PR

for every 1 ≤ j ≤ m.

Theorem 3.3.4 Assuming that H is a programmable random oracle, G is a pseudorandom
generator, Protocol 5 securely computes the R-OT functionality (Functionality 4) in the `×OTκ-
hybrid model in the presence of a static malicious adversary.

Proof Sketch: The proof follows from Theorems 3.3.3 and 3.3.2. In particular, in case of
corrupted sender the simulator receives the inputs (x0

1,x
1
1), . . . ,(x0

m,x
1
m) from the trusted party,

and it programs the random oracle H such that for every 1 ≤ j ≤ m, H(j,qj) = x0
j and

H(j,qj ⊕ s) = x1
j . In case of a corrupted receiver, the input r that the simulator extracts and

sends to the trusted party is the most repeated ri value according to the messages u2, . . . ,u`
(where r1 is defined as G(k0

1)⊕G(k1
1)).

Summary The original OT extension protocol of [31] and our proposed improvements for m
OTs on n-bit strings are summarized in Tab. 3.1. We compare the communication complexity
of PR and PS for m parallel 1-out-of-2 OT extensions of n-bit strings, with security parameter κ
and ` base-OTs (we omit the cost of the initial κ base-OTs on κ-bit strings). We also compare
the assumption on the function H needed in each protocol, where CR denotes Correlation
Robustness and RO denotes Random Oracle.

3.3.5 Evaluation of Special Purpose OT Functionalities
We evaluate the performance of the special purpose OT functionalities, outlined in the previous
section. We use the performance of the Random OT (R-OT) (cf. Section 3.3.4) as base-line
and evaluate the overhead that is added when using the the original OT, Correlated OT (C-
OT) (cf. Section 3.3.1), and Sender Random OT (SR-OT) (cf. Section 3.3.2) functionalities.
We vary the number of OTs from 210 (=1,024) to 224 (=16,777,216) and fix the bit-length
of the transferred strings to 128. The results for a LAN (two Desktop PCs with an Intel
Haswell i7-4770K CPU, connected via Gigabit LAN) and a WAN (two Amazon EC2 m3.xlarge
instances, connected via a 120MBit/s bandwidth and 100 ms ping latency link) scenario are
given in Figure 3.2.
From the results we can observe that the standard OT functionality and the C-OT functionality
are both slower than the R-OT functionality. The SR-OT, on the other hand, has a similar
performance as the R-OT since R-OT only reduces the communication by a single bit per OT.
In the LAN setting, the performance difference is nearly negligible (224 R-OTs need 13.1 s while
the same number of OTs require 13.6 s), since the improvements from R-OT mainly affect the
communication complexity which is not the bottleneck in the LAN setting. In the WAN setting,
however, the performance improvements of (S)R-OT are higher, since the communication is the
bottleneck and the C-OT and standard OT functionality have to send messages from the sender
to the receiver. Evaluating 224 OTs in the WAN setting requires 23.0 s for the standard OT
functionality, 20.7 s for the C-OT functionality, 19.7 s for SR-OT, and 19.5 s for R-OT.

PRACTICE D13.3 Page 31 of 51

The Full Set of New Protocols

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
un

−
tim

e
O

ve
rh

ea
d

(s
)

Number of OTs (2x)

Standard OT
C−OT §6.1

 SR−OT §6.2

{0.5 s}
{0.4 s}
{0.0 s}

(a) LAN Setting

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
un

−
tim

e
O

ve
rh

ea
d

(s
)

Number of OTs (2x)

Standard OT
C−OT §6.1

 SR−OT §6.2

{3.5 s}
{1.2 s}
{0.2 s}

(b) WAN Setting

Figure 3.2: Run-time overhead over R-OT for different OT flavors using the semi-honest OT
extension on 128-bit strings in the LAN (a)- and WAN (b) setting.

3.4 Token-Aided Mobile GMW (short description)
This section is based on [18]. The complete description of this work appears in deliverable
D13.1.
In the two-party case, the Goldreich-Micali-Wigderson (GMW) protocol [27] enables two mutually-
distrusting parties A and B to securely evaluate a function which is expressed as a Boolean
circuit. The GMW protocol relies heavily on OT and requires two OTs to compute a multi-
plication triple [5] that is used to evaluate an AND gate. Using OT pre-computation [5], the
computation and communication intensive operations can be pre-computed in an interactive
setup phase that is independent of the function. We describe a hardware token-aided GMW-
based protocol for mobile phones [18]. Our goal is to minimize the ad-hoc time of the protocol,
i.e., the time from establishing the communication channel between party A and party B until
receiving the results of the secure computation.

Figure 3.3: The three phases, workload distribution, and communication in our token-aided
scheme.

An overview of our protocol is given in Figure 3.3. The general idea is to let the hardware
token T , held by A, generate multiplication triples from two (or more) seeds in the init phase
that are independent of the later communication partner. In the setup phase, T then sends one
seed toA and the other seed over an encrypted channel to B. The token thereby replaces the OT
protocol in the setup phase and allows pre-computing the multiplication triples independently
of the communication partner. The online phase of the GMW protocol remains unchanged.

PRACTICE D13.3 Page 32 of 51

The Full Set of New Protocols

3.5 Two-Party Unsigned Arithmetic Based on Additive
Secret Sharing (short description)

The complete description of this work appears in deliverable D13.1.
This work proposes a protocol stack for secure unsigned arithmetic computation for two par-
ties. Although in theory addition and multiplication suffice for all computation, it is often more
efficient to use specialized protocols also for other operations. We describe common arithmetic
protocols like addition, multiplication, integer division, exponentiation and comparisons. In ad-
dition, we include bit level operations like shifts and rotations. Some operations have protocols
for different flavours where some inputs can be public instead of private to get more efficiency.
For example, division has two versions with either public (PubDiv) or private divisor (PrivDiv).
We focus on computations in rings Z2k for some integer k > 0 which correspond to the k-
bit unsigned integer data types. An additive secret sharing of element x is denoted as [[x]].
Sharing [[x]] is made up of two shares [[x]]1 and [[x]]2 where x = [[x]]1 + [[x]]2. These shares are
distributed so that party CP i for i ∈ {1,2} has share [[x]]i and no knowledge about the other
share. Usually, the ring where the sharing is computed is understandable from the context, but
it is also possible to denote it as [[x]] mod 2k for x ∈ Z2k where [[x]]1, [[x]]2 ∈ Z2k . Furthermore, it
is possible to access single bits of individual shares or extract them from the shared elements.
For that, x[k] denotes the k’th bit of the value x, where k = 1 means the least significant bit.
In case of the share of the first party, the k’th bit would be denoted as [[x]]1[k]. However, in
case the shared bit is extracted from the shared value the result is denoted as [[x[k]]] mod 2.
We assume that at most one of the parties is passively corrupted and ensure the security of the
computations in this case. Current protocols rely on the security proof framework of passively
secure protocols from [10]. A significant step when using this framework is to determine secure
protocols that are a suitable finishing step of the composition. Two straightforward candidates
for this role are resharing and declassify. Declassify is more meaningful in the two-party setting
as it is a natural finishing step of any protocol. Clearly, two-party declassify is a secure protocol
as knowing [[x]]1 and x the second share is uniquely fixed as x − [[x]]1 and can be perfectly
simulated. The rest of the protocols in the computation are allowed to be input private.

3.6 Zero-Knowledge from Garbled Circuits – and GC for
ZK (short description)

This section is based on [22]. The complete description of this work appears in deliverable
D13.1.
Zero-knowledge protocols are one of the fundamental concepts in modern cryptography and
have countless applications. However, after more than 30 years from their introduction, there
are only very few languages (essentially those with a group structure) for which we can construct
zero-knowledge protocols that are efficient enough to be used in practice. This is problematic,
since zero-knowledge protocols (ZK) are one of the main building blocks in constructing MPC
protocols which are secure against malicious corruptions.
The work described here was done in AU and proposes a solution to this problem. It is based
on a slightly earlier work of AU and SAP [34] that presented a protocol based on Yao’s garbled
circuit technique that supports efficient zero-knowledge proofs for generic languages (e.g., to
prove statements of the form “I know x s.t. y = SHA-256(x)” for a common input y). The new
work in [22] shows that garbled circuits can be optimized for this specific application.
In the last few years garbled circuits have been elevated from being merely a component in

PRACTICE D13.3 Page 33 of 51

The Full Set of New Protocols

Yao’s protocol for secure two-party computation, to a cryptographic primitive in its own right,
following the growing number of applications that use GCs, including the zero-knowledge ex-
ample described above. Our current work shows that due to the property of this particular
application (i.e., one of the parties knows all the secret input bits, and therefore all interme-
diate values in the computation), we can construct more efficient garbling schemes specifically
tailored to this goal.
As a highlight of the results in [22], in one of the constructions only one ciphertext per gate
needs to be communicated and XOR gates never require any cryptographic operations. In
addition to making a step forward towards more practical ZK, we believe that this contribution
is also interesting from a conceptual point of view: in the terminology of Bellare et al. [9] these
garbling schemes achieve authenticity, but no privacy nor obliviousness, therefore representing
the first natural separation between those notions.

3.7 ZKBoo – Practically Efficient Zero-Knowledge Ar-
guments

We describe ZKBoo [25], a proposal for practically efficient zero-knowledge arguments especially
tailored for Boolean circuits. As an highlight, with ZKBoo it is possible to generate (resp. verify)
a non-interactive proof for the SHA-1 circuit in approximately 13ms (resp. 5ms), with a proof
size of 444KB.
ZKBoo is based on the “MPC-in-the-head” approach to zero-knowledge of Ishai et al. [33],
which has been successfully used to achieve significant asymptotic improvements.
In IKOS, a prover simulates an MPC protocol between a number of “virtual” servers (at least
3) and then commits to the views and internal state of the individual servers. Now the verifier
challenges the prover by asking to open a subset of these commitments. The privacy guarantee
of the underlying MPC protocol guarantees that observing the state of a (sufficiently small)
subset of servers does not reveal any information. At the same time, the correctness of the MPC
protocol guarantees that if the prover tries to prove a false statement, then the joint views of
some of the server must necessarily be inconsistent, and the verifier can efficiently check that. By
plugging different MPC protocols into this approach, [33] shows how to construct ZK protocols
with good asymptotic properties. However, prior to our work, no one had investigated whether
the IKOS approach can be used to construct practically efficient ZK protocols.

3.7.1 (2,3)-Function Decomposition
Given an arbitrary function φ : X → Y and an input value x ∈ X we want to compute the
value φ(x) splitting the computation in 3 branches such that the values computed in 2 branches
reveals no information about the input x. In order to achieve this, we start by splitting the value
x in three values x1,x2,x3 (called input shares) using a surjective function that we indicate with
Share. These input shares as well as all the intermediate values are stored in 3 string w1,w2,w3
called the views. More precisely, wi contains the values computed in the computation branch i.
In order to achieve the goal and compute the value y = φ(x), we use a finite family of efficiently
computable functions that we indicate with F = ⋃N

j=1{φ
(j)
1 ,φ

(j)
2 ,φ

(j)
3 }. The function φ(j)

m takes
as inputs specific values from the views wm,wm+1 with m = {1,2,3} and where 3 + 1 = 1. The
functions are used in the following way: we use functions φ(j)

1 ,φ
(j)
2 ,φ

(j)
3 to compute the next

value to be stored in each view wm: The function φ(1)
m takes as input wm,wm+1 (which at this

point contain only the shares xm,xm+1) and outputs one value which is saved in position 1 of

PRACTICE D13.3 Page 34 of 51

The Full Set of New Protocols

the views wm. We continue like this for all N functions, with the difference that in step j > 1,
the function φ(j)

m can receive as input (any subset of) the current views wm,wm+1. The initial
function Share and all subfunctions φ(j)

m are allowed to be randomized, and they get their coins
from k1,k2,k3, three random tapes which correspond to the three branches. Finally, after the
N steps described, the 3 functions Output1,Output2,Output3 are used to compute the values
yi = Outputi(wi) that we call output shares. From these three values we compute the final
output y = φ(x) using the function Rec.

w1[0] = x1 w2[0] = x2 w3[0] = x3

Share

x

φ
(1)
1 φ

(1)
2 φ

(1)
3

φ
(2)
1 φ

(2)
2 φ

(2)
3

...

Output1 Output2 Output3

Rec

y

x1 x2
x3

w1[1] w2[1] w3[1]

w1 w2 w3

w1[2] w2[2] w3[2]

y1 y2
y3

Figure 3.4: Pictorial representation of a (2,3)-decomposition of the computation y = φ(x)
showing the three branches.

A (2,3)-decomposition for the function φ must satisfy correctness (informally, the output final
output is φ(x)) and privacy (informally, any 2 threads in the decomposition can be simulated

PRACTICE D13.3 Page 35 of 51

The Full Set of New Protocols

without knowing the input).

The Linear Decomposition

We present here an explicit example of a convenient (2,3)-decomposition. Let Z be an arbitrary
finite ring such that φ : Zk → Z` can be expressed by an arithmetic circuit over the ring using
addition by constant, multiplication by constant, binary addition and binary multiplication
gates1. The total number of gates in the circuit is N , the gates are labelled with indices in [N].
The linear (2,3)-decomposition of φ is defined as follows:

• ShareZ(x; k1,k2,k3) samples random x1,x2,x3 such that x = x1 + x2 + x3;

• The family FZ = ⋃N
c=1{φ

(c)
1 ,φ

(c)
2 ,φ

(c)
3 } is defined in the following way. Assume that the

c-th gate has input wires coming from the gate number a and the gate number b (or only
gate number a in the case of a unary gate), then the function φ(c)

i is defined as follows: If
the c-th gate is a (∀α ∈ Z)
− unary “add α” gate, then ∀ i ∈ [3]:

wi[c] = φ
(c)
i (wi[a]) =

wi[a] + α if i = 1
wi[a] else

− unary “mult. α” gate, then ∀ i ∈ [3]:

wi[c] = φ
(c)
i (wi[a]) = α ·wi[a]

− binary addition gate, then ∀ i ∈ [3]:

wi[c] = φ
(c)
i (wi[a],wi[b]) = (wi[a] + wi[b])

− binary multiplication gate, then ∀ i ∈ [3]:

wi[c] = φ
(c)
i

(
wi[a,b],wi+1[a,b])

)
= wi[a] ·wi[b] + wi+1[a] ·wi[b]
+ wi[a] ·wi+1[b] +Ri(c)−Ri+1(c)

where Ri(c) is a uniformly random function sampled using ki.

• For all i ∈ [3], OutputZi (wi,ki) simply selects all the shares of the output wires of the
circuit;

• Finally, RecZ(y1,y2,y3) outputs y = y1 + y2 + y3

Given such a decomposition, ZKBoo can be instantiated as in Figure 3.5: If y ∈ Lφ is the
public input of the proof, then the prover P uses his private input x (with φ(x) = y) to run
“in his head” the protocol Π∗φ. After the emulation of the protocol, P commits to each of the 3
produced views w1,w2,w3. Now the verifier challenges the prover to open 2 of the commitments.
Finally, the verifier accepts if the opened views are consistent with the decomposition used and
with output y.

1Note that Boolean circuits are a special case of this, with the XOR, AND and NOT gate.

PRACTICE D13.3 Page 36 of 51

The Full Set of New Protocols

ZKBoo Protocol

The verifier and the prover have input y ∈ Lφ. The prover knows x such that y = φ(x). A
(2,3)-decomposition of φ is given. Let Π∗φ be the protocol related to this decomposition.

Commit: The prover does the following:

1. Sample random tapes k1,k2,k3;
2. Run Π∗φ(x) and obtain the views w1,w2,w3 and the output shares y1,y2,y3;
3. Commit to ci = Com(ki,wi) for all i ∈ [3];
4. Send a = (y1,y2,y3,c1,c2,c3).

Prove: The verifier choose an index e ∈ [3] and sends it to the prover. The prover
answers to the verifier’s challenge sending opening ce,ce+1 thus revealing z =
(ke,we,ke+1,we+1).

Verify: The verifier runs the following checks:

1. If Rec(y1,y2,y3) 6= y, output reject;
2. If ∃,i ∈ {e,e+ 1} s.t. yi 6= Outputi(wi), output reject;
3. If ∃j such that

we[j] 6= φ(j)
e

(
we,we+1,ke,ke+1

)
output reject;

4. Output accept;

Figure 3.5: ZKBoo protocol for the language L in the commitment-hybrid model.

PRACTICE D13.3 Page 37 of 51

The Full Set of New Protocols

Chapter 4

Order-Preserving Encryption for
Secure Database Qeuries

4.1 Optimal Average-Complexity Ideal-Security Order-
Preserving Encryption (short description)

This section is based on [37]. The complete description of this work appears in deliverable
D13.1.
Order-preserving encryption enables performing many classes of queries – including range
queries – on encrypted databases. Popa et al. recently presented an ideal-secure order-preserving
encryption (or encoding) scheme [64], but their cost of insertions (encryption) is very high. Ker-
schbaum et al. presented an also ideal-secure, but significantly more efficient order-preserving
encryption scheme [37]. This scheme is inspired by Reed’s referenced work on the average height
of random binary search trees. The scheme improves the average communication complexity
from O(n log n) to O(n) under uniform distribution. It also integrates efficiently with ad-
justable encryption as used in CryptDB. In their experiments for database inserts Kerschbaum
et al. achieve a performance increase of up to 81% in LANs and 95% in WANs.
Kerschbaum et al.’s order-preserving encryption algorithm builds a binary search tree as does
Popa et al.’s. The tree is however not necessarily balanced and relies on the uniformity as-
sumption about the input distribution. They only balance the tree when necessary, i.e., then
an update operation is performed. This enables them to maintain the dictionary on the client
and therefore achieve a significant performance gain and compatibility with adjustable onion
encryption.

4.2 Frequency-Hiding Order-Preserving Encryption (short
description)

This section is based on [35]. The complete description of this work appears in deliverable
D13.1.
This work presents a scheme that achieves a strictly stronger notion of security than any other
order-preserving encryption scheme so far. The basic idea is to randomize the ciphertexts to
hide the frequency of plaintexts. Still, the client storage size remains small, up to 1/15 of the
plaintext size. As a result, one can more securely outsource large data sets, since the new
scheme also show that their security increases with larger data sets. They clearly increase
security while preserving the functionality for most queries relying on the ordering information.

PRACTICE D13.3 Page 38 of 51

The Full Set of New Protocols

However, they also increase client storage size and introduce a small error in some queries. The
new work presents a definition of a new, stronger security notion for order-preserving encryption
than indistinguishability under chosen plaintext attack which they call indistinguishability under
frequency-analyzing ordered chosen plaintext attack. It also presents a scheme implementing this
notion including compression mechanisms.

PRACTICE D13.3 Page 39 of 51

The Full Set of New Protocols

Chapter 5

Protocols for Private Set Intersection

Private set intersection (PSI) allows two parties A and B with respective input sets X and
Y to compute the intersection X ∩ Y of their sets without revealing any information but the
intersection itself. Although PSI has been widely studied in the literature, many real-world
applications today use an insecure hash-based protocol instead of a secure PSI protocol, mainly
because of the insufficient efficiency of current PSI protocols.
In a sequence of works we presented improved PSI protocols that were more efficient by the
state of the art by at least an order of magnitude. The most advanced family of protocols
that we presented, denoted Phasing for Permutation-based Hashing Set Intersection, is a new
approach for constructing PSI protocols based on a hashing technique that ensures that hashed
elements can be represented by short strings without any collisions. The overhead of recent PSI
protocols depends on the length of these representations, and this new structure of construction,
together with other improvements, results in very efficient performance that is only moderately
larger than that of the insecure protocol that is in current real-world usage.

5.1 PSI Protocols based on Oblivious Transfer (short de-
scription)

This section is based on [58]. The complete description of this work appears in deliverable
D13.1.
The goal of this work was to enable PSI computations for large scale sets that were previously
beyond the capabilities of state-of-the-art protocols. The constructions that were designed
improve performance by more than an order of magnitude. These improvements were obtained
by generalizing the hashing approach of [61] and applying it to generic secure computation-
based PSI protocols. The hash function in [61] were replaced by a permutation which enables
to reduce the bit-length of internal representations. Moreover, several improvements to the
OT-based PSI protocol of [61] were presented. The contributions are next explained in more
detail:

5.2 A New Set of Protocols for PSI
Private set intersection (PSI) allows two parties A and B holding sets X and Y , respectively, of
σ-bit elements to identify the intersection X ∩ Y without revealing any information about ele-
ments that are not in the intersection. In this section, we outline protocols that use an oblivious

PRACTICE D13.3 Page 40 of 51

The Full Set of New Protocols

pseudo-random function (OPRF) to perform PSI and that extend previous PSI protocols, out-
lined in Section 7 in D11.1 and Section 5 in D13.1. An OPRF [23] F : {0,1}σ×{0,1}κ 7→ {0,1}`
is a function which, given a key k from A and an input element e from B, computes and out-
puts Fk(e) to B. A obtains no output and learns no information about e while B learns no
information about k. OPRFs can be used for PSI by first evaluating the OPRF protocol on
the set of B and then having A, who knows the secret key k, evaluate the OPRF locally on its
own set, and send the OPRF output to B, who computes a plaintext intersection.
We outline two protocols for OPRF-based PSI: the first protocol uses generic secure compu-
tation techniques (§5.2.1) and the second protocol uses oblivious transfer (OT, §5.2.2). Both
protocols appear in [62].

5.2.1 Secure Computation-based OPRF Evaluation
A generic secure computation-based protocol performing PSI was outlined in [23, 59] and uses
an OPRF. In this protocol, the parties use secure computation techniques such as Yao’s garbled
circuits [69] or the GMW protocol [27] to evaluate a pseudo-random function Fk(y) = z. The
use of secure computation guarantees the obliviousness, i.e., that A learns no information about
y or z while B learns no information about k. The PSI functionality can then be achieved by
evaluating the OPRF on each element in the set of B and having A locally evaluate and send
Fk(xi) for all elements xi ∈ X. B can then identify the intersection by computing the plaintext
intersection between his output of the OPRF with the output sent by A.

Efficiency The efficiency of the circuit-based OPRF construction depends mainly on the
instantiation of the pseudo-random function F . While it is possible to instantiate F with a
cipher that is optimized for use in secure computation such as [1], we consider an AES-based
instantiation in our efficiency analysis, since the security of AES is well researched. The number
of AND gates in the AES circuit is 5,440 and its multiplicative depth is 40 [11]. In total, we
have to perform n2 parallel oblivious AES evaluations (wher n2 is the number of items in the set
Y), resulting in 5,440n2 total AND gates and a depth of 40. A, on the other hand, can perform
a plaintext AES evaluation on his elements and only needs to send n1 collision-resistant strings
of ` = σ + log(n1) + log(n2) bit length. Hence, due to the large constants, the OPRF-based
approach is less efficient in concrete terms than existing PSI circuits that were outlined in
Section 7.3 in D11.1 and Section 5.1 in D13.1, even though it scales with O(n) while both other
circuits scale with O(n log n). However, we show in [62] that if the set sizes of the parties greatly
differ, i.e., when n2 � n1, the OPRF-based approach can be more efficient than other circuit
constructions and in fact more efficient than even all other PSI protocols, since the elements in
the much larger set of A can be processed at very low cost.

5.2.2 OT-based OPRF Evaluation
In this section, we describe our new OT-based PSI protocol, of which an earlier version appeared
in Section 7.4.3 in D11.1 and Section 5.1 in D13.1. In contrast to the earlier versions, we improve
our protocol such that its complexity is now independent of the bit length σ for realistic set
sizes. The core of our OT-based PSI protocol is an efficient OPRF instantiation using recent
OT extension techniques, in particular the random OT functionality [2,55] and the 1-out-of-N
OT (

(
N
1

)
-OT) of [41]. Our protocol operates in three steps: the parties hash their elements

into hash tables, mask their elements using the OPRF, and compute the plaintext intersection
of these masks to identify the intersecting elements. In the hashing step we use the methods

PRACTICE D13.3 Page 41 of 51

The Full Set of New Protocols

outlined in [62] and the plaintext intersection is straight-forward and does not affect security.
Hence, we only describe the OPRF construction in more detail in the following.

PROTOCOL 6 (Our OT-based PSI Protocol)

• Input of A: X = {x1,...,xn1}.

• Input of B: Y = {y1,...,yn2}.

• Common Input: Bit-length of elements σ; number of bins b = εn2 (cf. [62] for details on
these parameters); k random hash functions {h1,...,hk} : {0,1}σ 7→ [1...b]; reduced bit-length
of items in the hash table µ = σ − log2 b+ log2 k; symmetric security parameter κ; statistical
security parameter σ; mask-length ` = σ+ log2(kn1) + log2(n2); N = 2µ; dummy element d2;
stash size s.

• Oracles and cryptographic primitives: Both parties have access to a functionality that
computes one 1-out-of-N random OT on `-bit strings (

(
N
1
)
-ROT1

`).

1. Hashing:

(a) A maps the elements in its set X into a two-dimensional hash table T1[][] using simple
hashing and k hash functions {h1, ..., hk}. The first dimension has size b and addresses
the bin in the table while the second dimension addresses the elements in the bins.

(b) B maps the elements in its set Y into a one-dimensional hash table T2[] and stash S[]
using Cuckoo hashing and k hash functions {h1, ..., hk}. The hash table has size b and
the stash has size s. B then fills all empty entries in T2 and S with d2.

Let |T1[i]| be the number of elements that are stored in the i-th bin of the hash table T1 and
µ be the bit-length of these elements for 1 ≤ i ≤ b.

2. OPRF evaluation (via OT):
For each bin 1 ≤ i ≤ b, the parties perform the following steps:

(a) Let vj = T1[i][j] and w = T2[i] for 1 ≤ j ≤ |T1[i]|.

(b) The parties evaluate an OPRF using the
(
N
1
)
-ROT1

` functionality, where A has no inputs
and obtains a random N -entry look-up table L and B inputs w as choice bits and obtains
a random mask L[w].

(c) A computes M1[i][j] = L[vj] and B computes M2[i] = L[w].

Stash: For each element in the stash S, the parties repeat the same steps where, for the i-th
stash position, A evaluates the OPRF on his whole input set X and obtains n1 masks MS1 [i]
while B evaluates the OPRF on S[i] and obtains one masks MS2 [i].

3. Plaintext Intersection

(a) Let V =
⋃

1≤i≤b,1≤j≤|T1[i]|M1[i][j]. A randomly permutes V and sends it to B.

(b) B computes the intersection Z = {T2[i]|M2[i] ∈ V }.

Stash: The parties perform the same operation to identify whether an element on the stash
is in the intersection: A permutes and sends MS1 [i] to B, who adds S[i] to the intersection Z
if MS2 [i] ∈MS1 [i].

• Output: A has no output; B outputs Z = X ∩ Y .

In the first step of our OT-based PSI protocol, the parties have mapped their elements into
hash tables T1 and T2 where the elements in the tables have bit-length µ = σ − log2 b + log2 k
due to permutation-based mapping (cf. D13.1 Section 5.1 and [62] for more information on
permutation-based hashing). A has used simple hashing and hence its hash table T1 has two

PRACTICE D13.3 Page 42 of 51

The Full Set of New Protocols

dimensions, where the first dimension addresses the bins and the second dimension addresses
the elements in the bins. B has used Cuckoo hashing and hence its hash table T2 has only one
dimension, which addresses the bins. Our OT-based PSI protocol then evaluates an OPRF F
where, for each bin, A samples a random key and B inputs the µ-bit element in bin T2[i] and
obtains the resulting mask M2[i] = Fki(T2[i]), for 1 ≤ i ≤ b. The OPRF must ensure that A
learns no information on the input of B and that B learns no information except the outputs
that correspond to its elements.
The main observation is that we can instantiate an OPRF for µ-bit inputs using one random
1-out-of-2µ random OT on `-bit strings (

(
2µ
1

)
-ROT1

`), where A plays the sender and obtains a
2µ-dimensional lookup-table L : {0,1}µ 7→ {0,1}` while B plays the receiver who inputs T2[i]
and obtains L[T2[i]]. A can then evaluate the OPRF on the elements in its bin T1[i] locally by
computing M1[i][j] = L[T [i][j]], for 1 ≤ i ≤ b and 1 ≤ j ≤ |T1[i]|. After A has evaluated the
OPRF for all bins i, it collects the OPRF outputs M1[i] for all |T1[i]| elements in a bin to a
set V and permutes and sends V . B identifies whether T2[i] is in the intersection by checking
whether M2[i] matches any element in V . If the element T2[i] matches any element in T1[i],
their OPRF outputs will be equal. If T2[i] matches no element in T1[i], their OPRF outputs
will differ except with probability |T1[i]| · 2−`. The elements in the stash of B are processed
independently in a similar fashion: both parties evaluate the OPRF, B obtains the output for
the elements in its stash, and A evaluates the OPRF locally on each element of its set and
sends the permuted outputs to B, who identifies the intersection.

Efficiency The main computation and communication overhead comes from the OPRF eval-
uation. The efficiency of the OPRF depends greatly on the underlying instantiation. We
instantiate the OPRF that maps µ-bit inputs to `-bit outputs using the

(
2µ
1

)
-ROT1

` protocol
of [41] with the linear BCH code [277, 512, 129], generated by [53], which encodes up to 277

words to codewords of length 512 with relative Hamming distance κ, which is denoted as a [277,
512, 129] code.
Overall, the parties evaluate the OPRF s+ b times, corresponding to

(
2µ
1

)
-ROTs+b

` , where the
stash size s and the number of bins b = εn2 are chosen to achieve negligible Cuckoo hashing error
probability (cf. [62] for possible choices of these parameters). Regarding the communication, B
sends 512(s+b) bits for the

(
2µ
1

)
-ROT, while A sends k`n1 bits for the permuted OPRF output,

where k is the number of hash functions used for Cuckoo hashing and ` = log2(kn1)+log2(n2)+σ.
Regarding the computation, note that in a naive

(
2µ
1

)
-OT evaluation the sender, A, would need

to perform 2µ correlation-robust function evaluations, one for each message. However, since
A only needs to obtain the output for actual elements in its bins, it only needs to perform
(k + s)n1 correlation-robust function evaluations, which is independent of µ.

Correctness In the following, we analyze the correctness of the scheme. We assume that in
Step 1 in Protocol 6, A has used simple hashing to map each element k times into the hash
table T1 while B has used Cuckoo hashing to map each element once into the hash table T2.
If x = y then A and B will have the same item in a bin in their hash tables (B has mapped
the item to one of k bins while A has mapped the item to all k bins). For this bin, B obtains
Mx = L[x] as output of the OPRF and A can locally compute My = L[y] with Mx = My, and
B successfully identifies equality.
If x 6= y then the probability that Mx = My is 2−`. However, we require that all OPRF outputs
M2 for elements in the hash table T2 of B are distinct from all outputs M1 for elements in the
hash table T1 of A, which happens with probability kn1n22−`. Thus, to achieve correctness with

PRACTICE D13.3 Page 43 of 51

The Full Set of New Protocols

probability 1-2−σ, we must increase the bit-length of the OTs to ` = σ + log2(kn1) + log2(n2).

Security B’s security is obvious, since the only information that A learns are the random
values chosen in the random OT, which are independent of B’s input.
As for A’s security, note that B’s view in the protocol consists of its outputs M2 of the

(
N
1

)
-ROT

protocols, and of the values M1 sent by A. If there are two elements x ∈ X and y ∈ Y with
x = y, then there are outputs Mx = My. Otherwise, for x 6= y, these values are uniformly
distributed and B can gain no information about Mx, which is guaranteed by the properties of
the

(
N
1

)
-ROT protocol. In both cases, the view of B can be easily simulated given the output

of the protocol (i.e., knowledge whether x = y). The protocol is therefore secure according to
the common security definitions of secure computation [26].

PRACTICE D13.3 Page 44 of 51

The Full Set of New Protocols

Chapter 6

Conclusion

The report described new protocols for secure multi-party computation. The main goal of the
work that was performed was to address the needs of applications, by improving the performance
of protocols which fit the requirements of the application scenarios that were described in
Deliverable D11.2 of this project. The protocols that were presented in this report have been
published in multiple research papers at top-tier conferences.
The results that was presented in this deliverable can be categorized into several categories:

• Chapter 2 described improved protocols for generic secure multi-party computation, namely
protocols that can be used for securely computing any function.

• Chapter 3 described improved building blocks for constructing secure protocols. Namely
better constructions of oblivious transfer, token-aided computation, secure arithmetic op-
erations, and zero-knowledge proofs, which are tools that are used by secure computation
protocols.

• Chapter 4 described new protocols for the specific problem of search on encrypted data.
In that setting the input (an encrypted database) is of a huge size, and therefore generic
protocols are not sufficiently efficient.

• Chapter 5 described improved protocols for the specific problem of computing the inter-
section of two private sets. This is a problem of high interest and therefore we designed
protocols that are tailored for solving this problem and are significantly more efficient
that applying generic protocols to this problems.

PRACTICE D13.3 Page 45 of 51

The Full Set of New Protocols

Chapter 7

List of Abbreviations

2PC Two party computation
ABY Arithmetic-Boolean-Yao
AES Advanced encryption standard
BMR the Beaver-Micali-Rogaway protocol
DH Diffie-Hellman
EC European Commission
ECC Elliptic curve cryptography
FHE Fully homomorphic encryption
GC Garbled circuit
GMW the Goldreich-Micali-Wigderson protocol
GRR Garbled row reduction
IR Ireland
MPC Multi-party computation
OT Oblivious transfer
SCS Sort-compare-shuffle
SPDZ the Damgard-Pastro-Smart-Zakarias protocol
PRF Pseudo random function
PSI Private set intersection
VA Virginia
ZK Zero knowledge

PRACTICE D13.3 Page 46 of 51

The Full Set of New Protocols

Bibliography

[1] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers for MPC
and FHE. In Advances in Cryptology – EUROCRYPT’15, volume 9056 of LNCS, pages
430–454. Springer, 2015.

[2] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer and
extensions for faster secure computation. In ACM Computer and Communications Security
(CCS’13), pages 535–548. ACM, 2013. Code: http://encrypto.de/code/OTExtension.

[3] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer
extensions. Journal of Cryptology, 2016. Accepted for publication.

[4] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer extensions with security for malicious adversaries. In EUROCRYPT (1),
volume 9056 of Lecture Notes in Computer Science, pages 673–701. Springer, 2015.

[5] D. Beaver. Efficient multiparty protocols using circuit randomization. In Advances in
Cryptology – CRYPTO’91, volume 576 of LNCS, pages 420–432. Springer, 1991.

[6] D. Beaver. Correlated pseudorandomness and the complexity of private computations. In
Symposium on Theory of Computing (STOC’96), pages 479–488. ACM, 1996.

[7] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure pro-
tocols. In Harriet Ortiz, editor, 22nd STOC, pages 503–513. ACM, 1990.

[8] M. Bellare, V. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-key
blockcipher. In Symposium on Security and Privacy (S&P’13), pages 478–492. IEEE, 2013.

[9] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
ACM Conference on Computer and Communications Security, pages 784–796, 2012. Full
version at http://eprint.iacr.org/2012/265.

[10] Dan Bogdanov, Peeter Laud, Sven Laur, and Pille Pullonen. From input private to uni-
versally composable secure multi-party computation primitives. In IEEE 27th Computer
Security Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014, pages
184–198, 2014.

[11] J. Boyar and R. Peralta. A small depth-16 circuit for the AES S-Box. In Information
Security and Privacy Conference (SEC’12), volume 376 of IFIP Advances in Information
and Communication Technology, pages 287–298. Springer, 2012.

[12] J. Bringer, H. Chabanne, and A. Patey. SHADE: secure hamming distance computation
from oblivious transfer. In Financial Cryptography and Data Security (FC’13), volume
7862 of LNCS, pages 164–176. Springer, 2013.

PRACTICE D13.3 Page 47 of 51

http://encrypto.de/code/OTExtension
http://eprint.iacr.org/2012/265

The Full Set of New Protocols

[13] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient three-
party computation from cut-and-choose. In Garay and Gennaro [24], pages 513–530.

[14] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In Progress
in Cryptology - LATINCRYPT 2015 - 4th International Conference on Cryptology and
Information Security in Latin America, Guadalajara, Mexico, August 23-26, 2015, Pro-
ceedings, pages 40–58, 2015.

[15] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation from
threshold homomorphic encryption. In Advances in Cryptology – EUROCRYPT’01, volume
2045 of LNCS, pages 280–299. Springer, 2001.

[16] Ivan Damg̊ard, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. Gate-
scrambling revisited - or: The tinytable protocol for 2-party secure computation. IACR
Cryptology ePrint Archive, 2016:695, 2016.

[17] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In Safavi-Naini and Canetti [65], pages
643–662.

[18] D. Demmler, T. Schneider, and M. Zohner. Ad-hoc secure two-party computation on mobile
devices using hardware tokens. In USENIX Security Symposium (USENIX Security’14),
pages 893–908. USENIX, 2014.

[19] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY – a framework for effi-
cient mixed-protocol secure two-party computation. In Network and Distributed System
Security (NDSS’15). The Internet Society, 2015. Code: http://encrypto.de/code/ABY.

[20] C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: An efficient
and scalable protocol. In ACM Computer and Communications Security (CCS’13), pages
789–800. ACM, 2013.

[21] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. In
Communications of the ACM, volume 28(6), pages 637–647. ACM, 1985.

[22] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-free garbled
circuits with applications to efficient zero-knowledge. EUROCRYPT, 2015:598, 2015.

[23] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious
pseudorandom functions. In Theory of Cryptography Conference (TCC’05), volume 3378
of LNCS, pages 303–324. Springer, 2005.

[24] Juan A. Garay and Rosario Gennaro, editors. Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part II, volume 8617 of Lecture Notes in Computer Science. Springer, 2014.

[25] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-knowledge for
boolean circuits. In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016., pages 1069–1083, 2016.

[26] O. Goldreich. Foundations of Cryptography, volume 2: Basic Applications. Cambridge
University Press, 2004.

PRACTICE D13.3 Page 48 of 51

http://encrypto.de/code/ABY

The Full Set of New Protocols

[27] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a complete-
ness theorem for protocols with honest majority. In Symposium on Theory of Computing
(STOC’87), pages 218–229. ACM, 1987.

[28] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In ACM Symposium on Theory
of Computing (STOC’87), pages 218–229. ACM, 1987.

[29] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits under
standard assumptions. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-6, 2015, pages 567–578. ACM, 2015.

[30] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permu-
tations. In ACM Symposium on Theory of Computing (STOC’89), pages 44–61. ACM,
1989.

[31] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In
Advances in Cryptology – CRYPTO’03, volume 2729 of LNCS, pages 145–161. Springer,
2003.

[32] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Advances in Cryptology – CRYPTO’03, volume 2729 of LNCS, pages 145–161.
Springer, 2003.

[33] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from se-
cure multiparty computation. In Proceedings of the Thirty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’07, pages 21–30. ACM, 2007.

[34] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using gar-
bled circuits: how to prove non-algebraic statements efficiently. In ACM Conference on
Computer and Communications Security, pages 955–966, 2013.

[35] Florian Kerschbaum. Frequency-hiding order-preserving encryption. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2015.

[36] Florian Kerschbaum, Florian Hahn, Thomas Schneider, Michael Zohner, Pille Pullonen,
and Claudio Orlandi. PRACTICE Deliverable D13.1: a set of new protocols, 2015. Avail-
able from http://www.practice-project.eu.

[37] Florian Kerschbaum and Axel Schröpfer. Optimal average-complexity ideal-security order-
preserving encryption. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pages 275–286. ACM, 2014.

[38] Joe Kilian. Founding cryptography on oblivious transfer. In Janos Simon, editor, Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 20–31. ACM, 1988.

[39] Ágnes Kiss and Thomas Schneider. Valiant’s universal circuit is practical. In Advances in
Cryptology – EUROCRYPT’16, LNCS. Springer, 2016.

[40] Ágnes Kiss and Thomas Schneider. Valiant’s universal circuit is practical. Cryptology
ePrint Archive, Report 2016/093, 2016. http://eprint.iacr.org/2016/093.

PRACTICE D13.3 Page 49 of 51

http://www.practice-project.eu
http://eprint.iacr.org/2016/093

The Full Set of New Protocols

[41] V. Kolesnikov and R. Kumaresan. Improved OT extension for transferring short secrets. In
Advances in Cryptology – CRYPTO’13 (2), volume 8043 of LNCS, pages 54–70. Springer,
2013.

[42] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. Flexor: Flexible garbling for
XOR gates that beats free-xor. In Garay and Gennaro [24], pages 440–457.

[43] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates
and applications. In International Colloquium on Automata, Languages and Program-
ming (ICALP’08), volume 5126 of LNCS, pages 486–498. Springer, 2008.

[44] Vladimir Kolesnikov and Thomas Schneider. A practical universal circuit construction
and secure evaluation of private functions. In Financial Cryptography and Data Se-
curity (FC’08), volume 5143 of LNCS, pages 83–97. Springer, 2008. Code: http:
//encrypto.de/code/FairplayPF.

[45] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013,
volume 8043 of LNCS, pages 1–17. Springer, 2013.

[46] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, 2009.

[47] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round
multi-party computation combining BMR and SPDZ. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume
9216 of Lecture Notes in Computer Science, pages 319–338. Springer, 2015.

[48] Yehuda Lindell and Ben Riva. Cut-and-choose yao-based secure computation in the on-
line/offline and batch settings. In Garay and Gennaro [24], pages 476–494.

[49] Helger Lipmaa, Payman Mohassel, and Saeed Sadeghian. Valiant’s universal circuit:
Improvements, implementation, and applications. Cryptology ePrint Archive, Report
2016/017, 2016. http://ia.cr/2016/017.

[50] L. Lovász and M.D. Plummer. Matching Theory. AMS Chelsea Publishing Series. American
Mathematical Soc., 2009.

[51] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-party
computation system. In USENIX Security’04, pages 287–302. USENIX, 2004.

[52] Payman Mohassel and Seyed Saeed Sadeghian. How to hide circuits in MPC an efficient
framework for private function evaluation. In Advances in Cryptology – EUROCRYPT’13,
volume 7881 of LNCS, pages 557–574. Springer, 2013.

[53] Robert H Morelos-Zaragoza. The art of error correcting coding. John Wiley & Sons, 2006.
Code generation tools online at http://eccpage.com.

[54] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mecha-
nism design. In ACM Electronic Commerce (EC’99, pages 129–139, 1999.

PRACTICE D13.3 Page 50 of 51

http://encrypto.de/code/FairplayPF
http://encrypto.de/code/FairplayPF
http://ia.cr/2016/017
http://eccpage.com

The Full Set of New Protocols

[55] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical
active-secure two-party computation. In Advances in Cryptology – CRYPTO’12, volume
7417 of LNCS, pages 681–700. Springer, 2012.

[56] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra.
A new approach to practical active-secure two-party computation. In Safavi-Naini and
Canetti [65], pages 681–700.

[57] Annika Paus, Ahmad-Reza Sadeghi, and Thomas Schneider. Practical secure evaluation of
semi-private functions. In Applied Cryptography and Network Security (ACNS’09), volume
5536 of LNCS, pages 89–106. Springer, 2009.

[58] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set intersection using
permutation-based hashing. In USENIX Security’15, pages 515–530. USENIX, 2015.

[59] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party computation
is practical. In Advances in Cryptology – ASIACRYPT’09, volume 5912 of LNCS, pages
250–267. Springer, 2009.

[60] B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on ot
extension. In USENIX Security’14, pages 797–812. USENIX, 2014.

[61] B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on OT
extension. In USENIX Security Symposium, pages 797–812. USENIX, 2014.

[62] B. Pinkas, T. Schneider, and M. Zohner. Scalable private set intersection based on ot
extension. IACR Cryptology ePrint Archive, 2016:930, 2016.

[63] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-
party computation is practical. In Proceedings of the 15th International Conference on the
Theory and Application of Cryptology and Information Security: Advances in Cryptology,
ASIACRYPT ’09, pages 250–267, Berlin, Heidelberg, 2009. Springer-Verlag.

[64] Raluca Ada Popa, Frank H. Li, and Nickolai Zeldovich. An ideal-security protocol for
order-preserving encoding. In 34th IEEE Symposium on Security and Privacy, S&P, 2013.

[65] Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology - CRYPTO 2012,
volume 7417 of LNCS. Springer, 2012.

[66] Stefan Tillich and Nigel Smart. Circuits of basic functions suitable for MPC and FHE,
2015.
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/.

[67] Leslie G. Valiant. Universal circuits (preliminary report). In ACM Symposium on Theory
of Computing (STOC’76), pages 196–203. ACM, 1976.

[68] A. C. Yao. Protocols for secure computations. In FOCS’82, pages 160–164. IEEE, 1982.

[69] A. C. Yao. How to generate and exchange secrets. In Foundations of Computer Science
(FOCS’86), pages 162–167. IEEE, 1986.

[70] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
Foundations of Computer Science (FOCS’86), pages 162–167. IEEE, 1986.

PRACTICE D13.3 Page 51 of 51

http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

	Introduction
	Contents
	Publications

	Improved Secure Computation Protocols
	Fast Garbling of Circuits Under Standard Assumptions (short description)
	The Results

	Efficient Constant Round Multi-Party Computation Combining the BMR and SPDZ Protocols (short description)
	ABY: Mixed-Protocol Secure Computation (short description)
	Private Function Evaluation
	Private Function Evaluation Using Universal Circuits
	Valiant's Universal Circuit Construction
	The Size and the Depth of Valiant's UC
	Comparison of Valiant's UC for PFE with Other PFE Protocols

	TinyTable Secure Two-Party Computation

	Tools with Improved Efficiency
	Simple and Efficient Oblivious Transfer (short description)
	Actively Secure Oblivious Transfer Extension (short description)
	Improved Actively Secure Oblivious Transfer Extension
	Correlated OT (C-OT)
	Sender Random OT (SR-OT)
	Receiver Random OT (RR-OT)
	Random OT (R-OT)
	Evaluation of Special Purpose OT Functionalities

	Token-Aided Mobile GMW (short description)
	Two-Party Unsigned Arithmetic Based on Additive Secret Sharing (short description)
	Zero-Knowledge from Garbled Circuits – and GC for ZK (short description)
	ZKBoo – Practically Efficient Zero-Knowledge Arguments
	(2,3)-Function Decomposition

	Order-Preserving Encryption for Secure Database Qeuries
	Optimal Average-Complexity Ideal-Security Order-Preserving Encryption (short description)
	Frequency-Hiding Order-Preserving Encryption (short description)

	Protocols for Private Set Intersection
	PSI Protocols based on Oblivious Transfer (short description)
	A New Set of Protocols for PSI
	Secure Computation-based OPRF Evaluation
	OT-based OPRF Evaluation

	Conclusion
	List of Abbreviations

