
(12) United States Patent
Kerschbaum

USOO8839410B2

US 8,839,410 B2
Sep. 16, 2014

(10) Patent N0.:
(45) Date of Patent:

(54) TYPE-SYSTEM FOR MIXED PROTOCOL
SECURE COMPUTATION

Applicant: Florian Kerschbaum, Karlsruhe (DE)

Florian Kerschbaum, Karlsruhe (DE)

SAP AG, Walldorf (DE)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 129 days.

13/682,110

(71)
(72)
(73)
(*)

Inventor:

Assignee:
Notice:

(21)

(22)

Appl. No.:

Filed: Nov. 20, 2012

(65) Prior Publication Data

US 2014/0143764 A1 May 22,2014

Int. Cl.
G06F 7/00
G06F 9/45
US. Cl.
CPC G06F 8/42 (2013.01)

USPC 726/16; 380/28; 717/106; 717/143;
717/170; 726/26

(51)
(2006.01)
(2006.01)

(52)

(58) Field of Classi?cation Search
USPC 726/16, 26; 380/28; 717/106, 143, 170
See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,975,121 B2* 7/2011 Chen et al. 711/170
2003/0154468 A1* 8/2003 Gordon et al. 717/143
2008/0046865 A1* 2/2008 Kerschbaum 717/106

2009/0282208 A1* 11/2009 Chen et al. 711/170

2012/0121080 A1* 5/2012 Kerschbaum 380/28
2014/0130173 A1* 5/2014 Kerschbaum 726/26

OTHER PUBLICATIONS

Kerschbaum, “An Information-Flow Type System for Mixed Proto
col Secure Computation,” Proceedings of the ACM Symposium on

1002

Information, Computer and Communications Security, ASIA
CCS’13, May 8-10, 2013, 12 pages.
Backes, et al., “Computationally Sound Abstraction and Veri?cation
of Secure Multi-party Computations,” Proceedings of the 30th Con
ference on Foundations of Software Technology and Theoretical
Computer Science, 2010, 61 pages.
Beaver et al., “The Round Complexity of Secure Protocols,” Proceed
ings of the 22nd ACM Symposium on Theory of Computing, 1990,
pp. 503-513.
Ben-David, “Fairplaymij System for Secure Multi-Party Com
putation,” In CCS’08: Proceedings of the 15th ACM Conference on
Computer and Communications Security, 2008, 10 pages.
Ben-Or, “Completeness Theorems for Non-Cryptographic Fault
Tolerant Distributed Computation,” In STOC’88: Proceedings of the
20th ACM Symposium on Theory of Computing, 1988, 10 pages.

(Continued)

Primary Examiner * Beemnet Dada

Assistant Examiner * Sayed Beheshti ShiraZi

(74) Attorney, Agent, or Firm * Fish & Richardson PC.

(57) ABSTRACT

Implementations of the present disclosure are directed to for
checking that a to-be-compiled program is well-typed such
that the program is secure in a semi-honest model, and
include actions of receiving the program, the program being
provided in a human-readable, domain-speci?c program
ming language and including two or more protocols to pro
vide secure computation based on inputs provided by two or
more parties, processing the program in view of a type system
to determine whether the program is secure in the semi

honest model, the type system including a secure type system
extension provided as a set of typing rules that describe secu
rity types that can be assigned to one or more entities of the

program, and compiling the program to generate a computer
executable program in response to determining that the pro
gram is secure in the semi-honest model.

15 Claims, 16 Drawing Sheets

106)1“ 104

SC > Compiler Output

A

108L B 110
TS STS

US 8,839,410 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Bogdanov et al., “Sharemind: a framework for fast privacy preserving
computations,” In ESORICS’08: Proceedings of the 13th European
Symposium on Research in Computer Security, 2008, 15 pages.
Bogdanov et al., “Deploying secure multi-party computation for
?nancial data analysis,” In FC’12: Proceedings of the 16th Interna
tional Conference on Financial Cryptography and Data Security,
2012, 8 pages.
Bogetoft et al., “Secure Multiparty Computation Goes Live,” In
FC’09: Proceedings of the 13th International Conference on Finan
cial Cryptography and Data Security, 2009, 13 pages.
Catrina et al., “Fostering the Uptake of Secure Multiparty Computa
tion in E-Commerce,” Proceedings of the International Workshop on
Frontiers in Availability, Reliability and Security, 2008, 8 pages.
Cramer et al., “General Secure Multi-Party Computation from any
Linear Secret-Sharing Scheme,” In EUROCRYPT’00: Proceedings
of the 19th European Cryptology Conference, 2000, 19 pages.
Damg>rd et al., “Asynchronous Multiparty Computation: Theory
and Implementation,” In PKC’09: Proceedings of the 12th Interna
tional Conference on Practice and Theory in Public Key Cryptogra
phy, 2009, 20 pages.
Denning, “A Lattice Model of Secure Information Flow,” Commu
nications of the ACM 19(5), 1976, 20 pages.
Denning, et al., “Certi?cation of Programs for Secure Information
Flow,” Communications ofthe ACM 20(7), 1977, pp. 504-513.
Fournet, et al., “Information-Flow Types for Homomorphic Encryp
tions,” Proceedings of the 18th ACM Conference on Computer and
Communications Security, 2011, 10 pages.
Gentry, “Fully Homomorphic Encryption using Ideal Lattices. ”Pro
ceedings of the 41st ACM Symposium on Theory of Computing,
2009, 10 pages.
Goethals, et a1 ., “On Private Scalar Product Computation for Privacy
Preserving Data Mining,” Proceedings of the 7th International Con
ference on Information Security and Cryptology, 2004, 17 pages.
Goldreich, “Secure Multi-party Computation,” [online] http://www.
wisdom.weizmann.ac.il/~oded/pp.html, Oct. 2002, 2 pages.
Goldwasser, “Multi-Party Computations: Past and Present,” In
PODC’97: Proceedings of the 16th ACM Symposium on Principles
of Distributed Computing, 1997, 6 pages.
Goldwasser et al., “Probabilistic Encryption,” Journal of Computer
and Systems Science, vol. 28, No. 2, Apr. 1984, pp. 270-299.
Henecka et al., “TASTY: Tool for Automating Secure Two-partY
computations,” In CCS’10: Proceedings of the 17th ACM Confer
ence on Computer and Communications Security, 2010, 16 pages.
Huang et al., “Faster Secure Two-Party Computation Using Garbled
Circuits,” In Proceedings of the 20th USENIX Security Symposium,
2011,16 pages.
Ishai, et al., “Extending Oblivious Transfers Ef?ciently,” Proceed
ings of CRYPTO, 2003, 17 pages.

Jensen et al., “Towards Privacy-Preserving XML Transformation,” In
ICWS’ 1 1: Proceedings of the 9th IEEE International Conference on
Web Services, 2011, pp. 65-72.
Kerschbaum, “Automatically Optimizing Secure Computation,” In
CCS’ 1 1: Proceedings of the 18th ACM Conference on Computer and
Communications Security, 2011, 11 pages.
Kerschbaum et al., “Secure Collaborative Supply Chain Manage
ment,” IEEE Computer, 44(9), 2011, pp. 38 43.
Kerschbaum, et al., “RFID-based Supply Chain Partner Authentica
tion and Key Agreement,” In Proceedings of the 2nd ACM Confer
ence on Wireless Network Security WiSec’09, Mar. 16-18 2009, 10
pages.
Kolesnikov et al., “From Dust to Dawn: Practically Ef?cient Two
Party Secure Function Evaluation Protocols and their Modular
Design,” Cryptology ePrint Archive: Report 2010/079, 2010, 2
pages.
Lampson, “A Note on the Con?nement Problem,” Communications
ofthe ACM 16(10), 1973, 5 pages.
Lindell et al., “A Proof of Security of Yao’s Protocol for Two-Party
Computation,” Journal ofCryptology, 22(2), Jun. 26, 2006, 25 pages.
Malkhi et al., “FairplayiA Secure Two-Party Computation Sys
tem,” In Proceedings of the 13th USENIX Security Symposium, Feb.
1, 2004, 20 pages.
Myers, “JFlow: Practical Mostly-Static Information Flow Control,”
Proceedings of the 26th ACM Symposium on Principles of Program
ming Languages, Jan. 1999, 17 pages.
Naor, et al., “Ef?cient Oblivious Transfer Protocols,” Proceedings of
the Symposium on Data Structures and Algorithms, 2001, 10 pages.
Naccache, et al., “A New Public-Key Crypto system Based on Higher
Residues,” Proceedings of the ACM Conference on Computer and
Communications Security, 1998, 8 pages.
Nielsen et al., “A Domain-Speci?c Programming Language for
Secure Multiparty Computation,” In PLAS’07: Proceedings of the
ACM Workshop on Programming Languages and Analysis for Secu
rity, Jun. 14, 2007, pp. 21-30.
Paillier, “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” Proceedings of the International Conference
on the Theory and Application of Cryptographic Techniques,
Advances in CryptologyiEUROCRYPT ’99, May 1999, Lecture
Notes in Computer Science 1592, pp. 223-238.
Sabelfeld, et al., “Language-Based Information-Flow Security,”
IEEE Journal on Selected Areas in Communications, 21(1), Jan.
2003, 15 pages.
Schropfer et al., “L liAn Intermediate Language for Mixed-Proto
col Secure Computation,” In COMPSAC’ 1 1: Proceedings of the
35th, IEEE Computer Software and Applications Conference, Jul.
2011, pp. 298-307.
Volpano, et al., “A Sound Type System for Secure Flow Analysis,”
Journal of Computer Security 4(3), 1996, 20 pages.
Yao, “Protocols for Secure Computations,” In FOCS’82: Proceed
ings of the 23rd IEEE Symposium on Foundations of Computer
Science, 1982, pp. 160-164.

* cited by examiner

US. Patent Sep. 16, 2014 Sheet 1 0f 16 US 8,839,410 B2

FIG. 1
' Output

108 110

104

)102 Compiler A

1002

106

SC

US. Patent Sep. 16, 2014 Sheet 2 0f 16 US 8,839,410 B2

FIG. 2

US. Patent Sep. 16, 2014 Sheet 3 0f 16 US 8,839,410 B2

FIG. 3

US. Patent Sep. 16, 2014 Sheet 4 0f 16 US 8,839,410 B2

i

if.
i

6
7

prvk pp?
@1333; giiifsiiey:

‘piiiniélej; : remiiiey 3m?) .

a

We

was} i ‘ mg: a 1.13M "

my

{Mum {int ’3 2.:

Listing 12: Exampie Secure Multiplication

FIG. 4

US. Patent Sep. 16, 2014 Sheet 5 0f 16 US 8,839,410 B2

, v M w". WNW

Listing 13: Example Composed Protocol
for Sub-string Creation

FIG. 5

US. Patent Sep. 16, 2014 Sheet 6 0f 16 US 8,839,410 B2

“.1 k.“

l

4.»

3(1

YDBPHI

saw-c; “.1.

aware -

5 h a m <::_

Listing 18: Example Sub-string Type
De?nition

FIG. 6

US. Patent Sep. 16, 2014 Sheet 7 0f 16 US 8,839,410 B2

vii,» N1 Hug a . M v a. 53 %

sis“ k 1'; 353; a i} g l

@3153:

Listing 19: Example Helper Functions

FIG. 7

US. Patent Sep. 16, 2014 Sheet 8 0f 16 US 8,839,410 B2

mmmemi
wygm

'35} M ii. a 2' n my ;

mails“; a

w 1

can

Listing 20: Example Re-Randomization

FIG. 8

US. Patent Sep. 16, 2014 Sheet 9 0f 16 US 8,839,410 B2

w

rs: m m w}? 1
i

am”;

Listing 20: Example Encryption and Decryption

FIG. 9

US. Patent Sep. 16, 2014 Sheet 10 0f 16 US 8,839,410 B2

far amt ‘:
$368131 s; id

for i‘ 1 at s
?end sj i <12

semi {éf

int; 2

send M iii __'»<.

far 7 H i <, {mi

3" cm i m read '1' ntm
return y;

Listing 22: Example Message Sending

FIG. 10

US. Patent Sep. 16, 2014 Sheet 11 0f 16 US 8,839,410 B2

ram

sand simian: , j};

sag {f 5

1

Mstmm ;
4%

w I my;

Listing 14: Example Rotation

FIG. 11

US. Patent Sep. 16, 2014 Sheet 12 0f 16 US 8,839,410 B2

ww.

Listing 15: Example Initial Rea-randomization

FIG. 12

US. Patent Sep. 16, 2014 Sheet 13 0f 16 US 8,839,410 B2

in :2 12 :,

fi}? if. im. 1': i ,
if ii #4:; .x‘ ban }

m. chasm i: " "

ab :2 1'5 i: “ "

“sharing m“ 5

ii

Listing 16: Example Masking Sender

FIG. 13

US. Patent Sep. 16, 2014 Sheet 14 0f 16 US 8,839,410 B2

m gasncrypt£
“mm :' 2:. in? _j

mung:- a .2'

me

Listing 16: Example Masking Receiver

FIG. 14

US. Patent Sep. 16, 2014 Sheet 15 0f 16 US 8,839,410 B2

Receive program 1500
m f

V

Process program

Secure?

V

Generate error
notification 1 1

Compiie program
M

FIG. 15

US. Patent Sep. 16, 2014 Sheet 16 0f 16 US 8,839,410 B2

Input/Output

‘ 1

_ ‘ _

Memory
\ dd

3

9

{{ a ill b

3
£ ' " 5 2

NH ||||

__~|: nu 9 Q
_ _ 1‘2 - - LL

"""' ‘_

nu /\J
L_ llll

cu 8
.2 <3
>

Q a)

§ c
m (D

8 E
E o
D- 375

, \

/
/

US 8,839,410 B2
1

TYPE-SYSTEM FOR MIXED PROTOCOL
SECURE COMPUTATION

BACKGROUND

Secure two-party computation enables two parties to com
pute a function f over their joint, private inputs x and y,
respectively. Neither party can infer anything about the other
party’s input (e. g., y) except what can be inferred from one’s
own input (e.g., x) and the of the computation output (e.g., f(x,
y))

Secure computation has many applications (e.g., in the
?nancial sector) and has been successfully deployed in com
mercial and industrial settings. Secure computation proto
cols, however, are notoriously dif?cult to implement. For
example, secure computation protocols can encompass arbi
trary functionality in the joint computation. As another
example, secure computation protocols follow a rigorous
approach to security. In some instances, special protocols
(e.g., mixing several different primitives) are developed for
important problems. This is expected to provide more ef?
cient protocols due to insight into the problem domain. Such
special protocols, however, can require a manual veri?cation
and security proof resulting in inef?ciencies in practice.

Current domain-speci?c programming languages (DSPLs)
for secure computation do not adequately address these prob
lems. More particularly, DSPLs are either tied to a speci?c
protocol or enable implementing insecure protocols. On the
one hand, if a DSPL is tied to a speci?c protocol, then the
protocol may be manually proven secure independent of the
functionality. Such a proof extends to all protocols imple
mented in the particular DSPL, but the DSPL prevents imple
menting many special, possibly more ef?cient protocols. On
the other hand, if the DSPL is built upon a generic program
ming language (e.g., Python, Java), all special protocols can
be implemented. However, this still allows the pro grammer to
also implement insecure protocols that do not withstand secu
rity veri?cation.

SUMMARY

Implementations of the present disclosure include methods
for checking that a to-be-compiled program is well-typed
such that the program is secure in a semi-honest model. In
some implementations, methods include actions of receiving
the program, the program being provided in a human-read
able, domain-speci?c programming language and including
two or more protocols to provide secure computation based
on inputs provided by two or more parties, processing the
program in view of a type system to determine whether the
program is secure in the semi-honest model, the type system
including a secure type system extension provided as a set of
typing rules that describe security types that can be assigned
to one or more entities of the program, and compiling the
program to generate a computer-executable program in
response to determining that the program is secure in the
semi-honest model.

In some implementations, each entity includes one of a
variable and an expression.

In some implementations, the security type system extends
functionality of the type system to ensure that execution of the
computer-executable program is secure.

In some implementations, processing the program includes
assigning a type and a security type to each entity provided in
the program.

In some implementations, the security types comprise
tainted and untainted, and an untainted entity is provided as

20

25

30

35

40

45

50

55

60

65

2
an immutable object that contains random data that is inde
pendent of any other untainted entity.

In some implementations, an untainted entity can be used
in one of a send command and a re-randomization command
of the program and is cleared after use.

In some implementations, each typing rule is provided as
an inference rule that describes how a security type is
assigned to an entity.

In some implementations, the set of typing rules provides
that a particular variable is untainted and that all other vari
ables and expressions are tainted.

In some implementations, the set of typing rules ensure that
untainted variables can only be as signed by re-randomization
and output statements of the program.

In some implementations, the set of typing rules ensure that
message sending commands of the program can only be
executed in an untainted security context.

In some implementations, the program implements one or
more functions, and processing the program ensures that
execution of each function of the one or more functions is
secure in the semi-honest model.

In some implementations, a protocol of the program com
putes a function based on a plurality of inputs and is secure in
the semi-honest model, if, for each party of the two or more
parties, a polynomial-time simulator is provided that, given
one party’s input and a resulting output of the program, is
computationally indistinguishable from another party’ s view.

In some implementations, the type system associates data
types to each value that is to be computed in the program and
ensures that the program provides no type errors.
The present disclosure also provides a computer-readable

storage medium coupled to one or more processors and hav
ing instructions stored thereon which, when executed by the
one or more processors, cause the one or more processors to

perform operations in accordance with implementations of
the methods provided herein.
The present disclosure further provides a system for imple

menting the methods provided herein. The system includes
one or more processors, and a computer-readable storage
medium coupled to the one or more processors having
instructions stored thereon which, when executed by the one
or more processors, cause the one or more processors to

perform operations in accordance with implementations of
the methods provided herein.

It is appreciated that methods in accordance with the
present disclosure can include any combination of the aspects
and features described herein. That is to say that methods in
accordance with the present disclosure are not limited to the
combinations of aspects and features speci?cally described
herein, but also include any combination of the aspects and
features provided.
The details of one or more embodiments of the present

disclosure are set forth in the accompanying drawings and the
description below. Other features and advantages of the
present disclosure will be apparent from the description and
drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 depicts example compilation in accordance with
implementations of the present disclosure.

FIG. 2 depicts an example re-randomization algorithm in
accordance with implementations of the present disclosure.

FIG. 3 depicts example security typing rules in accordance
with implementations of the present disclosure.

FIGS. 4-14 depict example listings in accordance with
implementations of the present disclosure.

US 8,839,410 B2
3

FIG. 15 is a ?owchart illustrating an example process that
can be executed in implementations of the present disclosure.

FIG. 16 is a schematic illustration of example computer
systems that can be used to execute implementations of the
present disclosure.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Implementations of the present disclosure are generally
directed to a security type system that enables mixing proto
col primitives in a generic programming language, while
ensuring that well-typed programs are secure in the semi
honest model. More particularly, implementations of the
present disclosure provide a security type system for mixed
protocol secure computation, integration of the security type
system into a domain-speci?c programming language
(DSPL) extension for secure computation, proof that any
well-typed program is secure in the semi-honest model, and
an evaluation using example protocols (e.g., for multiplica
tion and substring creation).

In general, and as discussed in further detail herein, imple
mentations of the present disclosure ensure semi-honest secu
rity of secure computations implemented in domain-speci?c
languages. In some examples, either the language is based on
a speci?c protocol which has been proven secure or is based
on a generic language that enables use of insecure protocols.
Implementations of the type system of the present disclosure
limit the usable protocols to only secure protocols, while
enabling programmers to freely choose the protocol primi
tives. In accordance with implementations complex protocols
can be used (e.g., privacy-preserving string processing).

FIG. 1 depicts example compilation 100 in accordance
with implementations of the present disclosure. More par
ticularly, FIG. 1 depicts an example compiler 102 for gener
ating an output 104 from human-readable source code (SC)
106 in accordance with implementations of the present dis
closure. The example compiler 102 transforms the source
code 106 into the output 104. In some examples, the compiler
102 is provided as one or more computer-executable pro
grams that can be executed using one or more computing
devices. In some examples, the source code 106 is provided as
a computer-readable document that can be processed by the
compiler 102. In some examples, the source code 104 is
provided in a human-readable (human-writable) DSPL. In
some examples, the output 104 is provided as a computer
readable document that can be executed by one or more
computing devices to provide de?ned functionality (e.g.,
secure computation). In some examples, the output 104 is
provided in a machine-readable format (e.g., object code) to
de?ne a computer-executable program.

In some implementations, the compiler 102 processes the
source code 104 based on a type system (TS) 108. In general,
type systems associate data types to each value that is to be
computed based on source code (e.g., the source code 104)
and examines the data ?ow to ensure that the source code
provides no type errors. In some examples, type errors can
include mismatches between data types that can result in
execution of unintended functionality and/or that can hinder
execution of intended functionality.

In accordance with implementations of the present disclo
sure, a security type system (STS) 110 is provided. In some
examples, the STS 110 can extend functionality of the type
system 108 to ensure that execution of the resulting output
104 (e.g., as a computer-executable program) is secure, as
discussed in further detail herein.

20

25

30

35

40

45

50

55

65

4
In some implementations, an example DSPL includes a

generic programming language that is extended to be
domain-speci?c. Such DSPLs enable the user of ef?cient
protocols, but also do not guarantee against the programmer
making mistakes and.or implementing insecure protocols. An
example DSPL includes the L1 language, which provides an
extension for secure computation based on Java. The L1
language enables mixing of several different protocol primi
tives. It is appreciated, however, that the L1 language is pro
vided herein as an example DSPL and that implementations
of the present disclosure can also be realized using other
DSPLs. More particularly, implementations of the present
disclosure can be adapted for any DSPL that allows mixing
protocols and that is not tied to a particular protocol.

In some implementations, the DSPL is augmented with a
security type system (e.g., the security type system 110 of
FIG. 1). In accordance with the present disclosure, the secu
rity type system provably ensures that well-typed programs
are secure in the semi-honest model of secure computation. In
some examples, in the semi-honest model, each party follows
the protocol description. Each party, however, can keep a
record of the interaction and might try to infer additional
information about the other party’ s input. Protocols secure in
the semi-honest model provably prevent any such inference.
In accordance with the present disclosure, the compiler (e. g.,
the compiler 102 of FIG. 1) statically veri?es the security of
the protocol during compilation by using the secure type
system. Only secure protocols are compiled, and the pro
grammer is immediately noti?ed about potential security vio
lations.
As discussed in further detail herein, the security type

system can be evaluated for a DSPL (e.g., the L1 language)
using examples. One example is provided as a simple multi
plication protocol, and another example is provided as a com
plex protocol for privacy-preserving string processing. The
complex protocol example shows that even such protocolsi
using a wide variety of protocol primitives in intricate waysi
can be effectively implemented in the security type system.

In general, supporting security in a programming language
using a type system has been applied to information ?ow
security. Information ?ow is concerned with con?dentiality
breaches between principals in computer systems. Although
information ?ow types have been applied to homomorphic
encryption, the information ?ow types do not cover secure
computations using homomorphic encryption. This is
because all secure computations involve admissible informa
tion ?ows. Consequently, the basic typing assumption of non
interference does not hold in secure computation. Accord
ingly, the security type system of the present disclosure caters
for more complicated use cases, as discussed in further detail
herein.

In accordance with implementations of the present disclo
sure, secure computation is implemented using the primitives
of homomorphic encryption. Example primitives include
secret sharing, garbled circuits and oblivious transfer. In some
examples, the primitives can be combined in many ways and
could result in an insecure protocol. Each of the example
primitives is discussed in further detail below with reference
to two-party secure computation. It is appreciated, however,
that implementations of the present disclosure can be applied
to secure computation between two or more parties.

In some implementations, secure computation can be
implemented based on additively homomorphic encryption.
On the one hand, and as opposed to fully homomorphic
encryption, additively homomorphic encryption only imple
ments addition (modulo a key-dependent constant) as the

