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(57) ABSTRACT 

Implementations of the present disclosure are directed to for 
checking that a to-be-compiled program is well-typed such 
that the program is secure in a semi-honest model, and 
include actions of receiving the program, the program being 
provided in a human-readable, domain-speci?c program 
ming language and including two or more protocols to pro 
vide secure computation based on inputs provided by two or 
more parties, processing the program in view of a type system 
to determine whether the program is secure in the semi 

honest model, the type system including a secure type system 
extension provided as a set of typing rules that describe secu 
rity types that can be assigned to one or more entities of the 

program, and compiling the program to generate a computer 
executable program in response to determining that the pro 
gram is secure in the semi-honest model. 
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TYPE-SYSTEM FOR MIXED PROTOCOL 
SECURE COMPUTATION 

BACKGROUND 

Secure two-party computation enables two parties to com 
pute a function f over their joint, private inputs x and y, 
respectively. Neither party can infer anything about the other 
party’s input (e. g., y) except what can be inferred from one’s 
own input (e.g., x) and the of the computation output (e.g., f(x, 
y)) 

Secure computation has many applications (e.g., in the 
?nancial sector) and has been successfully deployed in com 
mercial and industrial settings. Secure computation proto 
cols, however, are notoriously dif?cult to implement. For 
example, secure computation protocols can encompass arbi 
trary functionality in the joint computation. As another 
example, secure computation protocols follow a rigorous 
approach to security. In some instances, special protocols 
(e.g., mixing several different primitives) are developed for 
important problems. This is expected to provide more ef? 
cient protocols due to insight into the problem domain. Such 
special protocols, however, can require a manual veri?cation 
and security proof resulting in inef?ciencies in practice. 

Current domain-speci?c programming languages (DSPLs) 
for secure computation do not adequately address these prob 
lems. More particularly, DSPLs are either tied to a speci?c 
protocol or enable implementing insecure protocols. On the 
one hand, if a DSPL is tied to a speci?c protocol, then the 
protocol may be manually proven secure independent of the 
functionality. Such a proof extends to all protocols imple 
mented in the particular DSPL, but the DSPL prevents imple 
menting many special, possibly more ef?cient protocols. On 
the other hand, if the DSPL is built upon a generic program 
ming language (e.g., Python, Java), all special protocols can 
be implemented. However, this still allows the pro grammer to 
also implement insecure protocols that do not withstand secu 
rity veri?cation. 

SUMMARY 

Implementations of the present disclosure include methods 
for checking that a to-be-compiled program is well-typed 
such that the program is secure in a semi-honest model. In 
some implementations, methods include actions of receiving 
the program, the program being provided in a human-read 
able, domain-speci?c programming language and including 
two or more protocols to provide secure computation based 
on inputs provided by two or more parties, processing the 
program in view of a type system to determine whether the 
program is secure in the semi-honest model, the type system 
including a secure type system extension provided as a set of 
typing rules that describe security types that can be assigned 
to one or more entities of the program, and compiling the 
program to generate a computer-executable program in 
response to determining that the program is secure in the 
semi-honest model. 

In some implementations, each entity includes one of a 
variable and an expression. 

In some implementations, the security type system extends 
functionality of the type system to ensure that execution of the 
computer-executable program is secure. 

In some implementations, processing the program includes 
assigning a type and a security type to each entity provided in 
the program. 

In some implementations, the security types comprise 
tainted and untainted, and an untainted entity is provided as 
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2 
an immutable object that contains random data that is inde 
pendent of any other untainted entity. 

In some implementations, an untainted entity can be used 
in one of a send command and a re-randomization command 
of the program and is cleared after use. 

In some implementations, each typing rule is provided as 
an inference rule that describes how a security type is 
assigned to an entity. 

In some implementations, the set of typing rules provides 
that a particular variable is untainted and that all other vari 
ables and expressions are tainted. 

In some implementations, the set of typing rules ensure that 
untainted variables can only be as signed by re-randomization 
and output statements of the program. 

In some implementations, the set of typing rules ensure that 
message sending commands of the program can only be 
executed in an untainted security context. 

In some implementations, the program implements one or 
more functions, and processing the program ensures that 
execution of each function of the one or more functions is 
secure in the semi-honest model. 

In some implementations, a protocol of the program com 
putes a function based on a plurality of inputs and is secure in 
the semi-honest model, if, for each party of the two or more 
parties, a polynomial-time simulator is provided that, given 
one party’s input and a resulting output of the program, is 
computationally indistinguishable from another party’ s view. 

In some implementations, the type system associates data 
types to each value that is to be computed in the program and 
ensures that the program provides no type errors. 
The present disclosure also provides a computer-readable 

storage medium coupled to one or more processors and hav 
ing instructions stored thereon which, when executed by the 
one or more processors, cause the one or more processors to 

perform operations in accordance with implementations of 
the methods provided herein. 
The present disclosure further provides a system for imple 

menting the methods provided herein. The system includes 
one or more processors, and a computer-readable storage 
medium coupled to the one or more processors having 
instructions stored thereon which, when executed by the one 
or more processors, cause the one or more processors to 

perform operations in accordance with implementations of 
the methods provided herein. 

It is appreciated that methods in accordance with the 
present disclosure can include any combination of the aspects 
and features described herein. That is to say that methods in 
accordance with the present disclosure are not limited to the 
combinations of aspects and features speci?cally described 
herein, but also include any combination of the aspects and 
features provided. 
The details of one or more embodiments of the present 

disclosure are set forth in the accompanying drawings and the 
description below. Other features and advantages of the 
present disclosure will be apparent from the description and 
drawings, and from the claims. 

DESCRIPTION OF DRAWINGS 

FIG. 1 depicts example compilation in accordance with 
implementations of the present disclosure. 

FIG. 2 depicts an example re-randomization algorithm in 
accordance with implementations of the present disclosure. 

FIG. 3 depicts example security typing rules in accordance 
with implementations of the present disclosure. 

FIGS. 4-14 depict example listings in accordance with 
implementations of the present disclosure. 
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FIG. 15 is a ?owchart illustrating an example process that 
can be executed in implementations of the present disclosure. 

FIG. 16 is a schematic illustration of example computer 
systems that can be used to execute implementations of the 
present disclosure. 

Like reference symbols in the various drawings indicate 
like elements. 

DETAILED DESCRIPTION 

Implementations of the present disclosure are generally 
directed to a security type system that enables mixing proto 
col primitives in a generic programming language, while 
ensuring that well-typed programs are secure in the semi 
honest model. More particularly, implementations of the 
present disclosure provide a security type system for mixed 
protocol secure computation, integration of the security type 
system into a domain-speci?c programming language 
(DSPL) extension for secure computation, proof that any 
well-typed program is secure in the semi-honest model, and 
an evaluation using example protocols (e.g., for multiplica 
tion and substring creation). 

In general, and as discussed in further detail herein, imple 
mentations of the present disclosure ensure semi-honest secu 
rity of secure computations implemented in domain-speci?c 
languages. In some examples, either the language is based on 
a speci?c protocol which has been proven secure or is based 
on a generic language that enables use of insecure protocols. 
Implementations of the type system of the present disclosure 
limit the usable protocols to only secure protocols, while 
enabling programmers to freely choose the protocol primi 
tives. In accordance with implementations complex protocols 
can be used (e.g., privacy-preserving string processing). 

FIG. 1 depicts example compilation 100 in accordance 
with implementations of the present disclosure. More par 
ticularly, FIG. 1 depicts an example compiler 102 for gener 
ating an output 104 from human-readable source code (SC) 
106 in accordance with implementations of the present dis 
closure. The example compiler 102 transforms the source 
code 106 into the output 104. In some examples, the compiler 
102 is provided as one or more computer-executable pro 
grams that can be executed using one or more computing 
devices. In some examples, the source code 106 is provided as 
a computer-readable document that can be processed by the 
compiler 102. In some examples, the source code 104 is 
provided in a human-readable (human-writable) DSPL. In 
some examples, the output 104 is provided as a computer 
readable document that can be executed by one or more 
computing devices to provide de?ned functionality (e.g., 
secure computation). In some examples, the output 104 is 
provided in a machine-readable format (e.g., object code) to 
de?ne a computer-executable program. 

In some implementations, the compiler 102 processes the 
source code 104 based on a type system (TS) 108. In general, 
type systems associate data types to each value that is to be 
computed based on source code (e.g., the source code 104) 
and examines the data ?ow to ensure that the source code 
provides no type errors. In some examples, type errors can 
include mismatches between data types that can result in 
execution of unintended functionality and/or that can hinder 
execution of intended functionality. 

In accordance with implementations of the present disclo 
sure, a security type system (STS) 110 is provided. In some 
examples, the STS 110 can extend functionality of the type 
system 108 to ensure that execution of the resulting output 
104 (e.g., as a computer-executable program) is secure, as 
discussed in further detail herein. 

20 

25 

30 

35 

40 

45 

50 

55 

65 

4 
In some implementations, an example DSPL includes a 

generic programming language that is extended to be 
domain-speci?c. Such DSPLs enable the user of ef?cient 
protocols, but also do not guarantee against the programmer 
making mistakes and.or implementing insecure protocols. An 
example DSPL includes the L1 language, which provides an 
extension for secure computation based on Java. The L1 
language enables mixing of several different protocol primi 
tives. It is appreciated, however, that the L1 language is pro 
vided herein as an example DSPL and that implementations 
of the present disclosure can also be realized using other 
DSPLs. More particularly, implementations of the present 
disclosure can be adapted for any DSPL that allows mixing 
protocols and that is not tied to a particular protocol. 

In some implementations, the DSPL is augmented with a 
security type system (e.g., the security type system 110 of 
FIG. 1). In accordance with the present disclosure, the secu 
rity type system provably ensures that well-typed programs 
are secure in the semi-honest model of secure computation. In 
some examples, in the semi-honest model, each party follows 
the protocol description. Each party, however, can keep a 
record of the interaction and might try to infer additional 
information about the other party’ s input. Protocols secure in 
the semi-honest model provably prevent any such inference. 
In accordance with the present disclosure, the compiler (e. g., 
the compiler 102 of FIG. 1) statically veri?es the security of 
the protocol during compilation by using the secure type 
system. Only secure protocols are compiled, and the pro 
grammer is immediately noti?ed about potential security vio 
lations. 
As discussed in further detail herein, the security type 

system can be evaluated for a DSPL (e.g., the L1 language) 
using examples. One example is provided as a simple multi 
plication protocol, and another example is provided as a com 
plex protocol for privacy-preserving string processing. The 
complex protocol example shows that even such protocolsi 
using a wide variety of protocol primitives in intricate waysi 
can be effectively implemented in the security type system. 

In general, supporting security in a programming language 
using a type system has been applied to information ?ow 
security. Information ?ow is concerned with con?dentiality 
breaches between principals in computer systems. Although 
information ?ow types have been applied to homomorphic 
encryption, the information ?ow types do not cover secure 
computations using homomorphic encryption. This is 
because all secure computations involve admissible informa 
tion ?ows. Consequently, the basic typing assumption of non 
interference does not hold in secure computation. Accord 
ingly, the security type system of the present disclosure caters 
for more complicated use cases, as discussed in further detail 
herein. 

In accordance with implementations of the present disclo 
sure, secure computation is implemented using the primitives 
of homomorphic encryption. Example primitives include 
secret sharing, garbled circuits and oblivious transfer. In some 
examples, the primitives can be combined in many ways and 
could result in an insecure protocol. Each of the example 
primitives is discussed in further detail below with reference 
to two-party secure computation. It is appreciated, however, 
that implementations of the present disclosure can be applied 
to secure computation between two or more parties. 

In some implementations, secure computation can be 
implemented based on additively homomorphic encryption. 
On the one hand, and as opposed to fully homomorphic 
encryption, additively homomorphic encryption only imple 
ments addition (modulo a key-dependent constant) as the 


















