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Executive Summary

This deliverable provides a theoretical evaluation of existing solutions to secure multi-party
computation. This topic has received considerable research, particularly in the last decade, but
the existing results were described in many separate publications, making it hard to obtain a
complete picture of available technologies. The deliverable summarizes our analysis of existing
techniques, and describes details of the techniques which were found to be most promising.
The first chapter of this deliverable describes the basic definitions and properties of secure
multi-party computation. The second chapter describes a taxonomy of secure multi-party
computation solutions, which is based on properties that are important for potential users
of this technology (such as, e.g., the maturity of existing implementations), rather than on
properties of the mathematical constructions.
The third chapter describes basic secure multi-party computation constructions that are secure
against a weaker type of adversary, denoted as a semi-honest or passive adversary. The fourth
chapter describes state-of-the-art solutions based on a technique called “cut and choose”, with
security against the strongest type of adversary, denoted as a malicious or active adversary.
The fifth and sixth chapters describe state-of-the-art solutions that demonstrate extraordinary
efficiency at the cost of running an initial preprocessing computation before the inputs become
known. These solutions, too, are secure against malicious adversaries.
Whereas most of this document describes generic secure multi-party protocols that can be used
for computing any functionality, the seventh chapter describes secure protocols for a specific
task that we believe to be relevant to many applications: computing the intersection of two sets
that are each known to a different party, in a way which reveals to the parties nothing but the
intersection itself. This chapter describes solutions for this task that are much more efficient
than using generic protocols for computing the intersection. The eighth chapter describes
solutions that enable to verify the correctness of the computation by parties that were not
involved in the computation.

b
b

PRACTICE D11.1 Page II



D11.1 - A Theoretical Evaluation of the Existing Secure Computation Solutions

Contents

1 Introduction 1
1.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Security definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Adversarial power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Secure Multi-Party Protocols (MPC) . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Feasibility of Secure Multi-Party Computation . . . . . . . . . . . . . . . 5
1.2.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Security against malicious adversaries . . . . . . . . . . . . . . . . . . . . 6
Recent work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 A Taxonomy of Secure Computation Settings and Solutions 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Usage models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Maturity of implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Programming paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Application development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Performance level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Generic Constructions Secure Against Semi-Honest Adversaries 15
3.1 Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Yao’s Garbled Circuits Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 The GMW Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 The BGW and CCD protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 The Cut-and-Choose Technique for Security Against Malicious Adversaries 21
4.1 The protocol of [81] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 The structure of the protocol . . . . . . . . . . . . . . . . . . . . . . . . 23
The protocol in detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Checks for Correctness and Consistency . . . . . . . . . . . . . . . . . . 25
Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Improved Efficiency Using Cut-and-Choose Oblivious Transfer . . . . . . . . . . 30
4.2.1 The new protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Improved Amortized Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Protocols with Preprocessing 33
5.1 Warm-up: One Time Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 The Arithmetic Black-Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Implementing the Arithmetic Black-Box With Passive Security . . . . . . 36
b
b

PRACTICE D11.1 Page III



D11.1 - A Theoretical Evaluation of the Existing Secure Computation Solutions

5.3 BeDOZA and TinyOT Online Phase . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 SDPZ Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 MiniMACs Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Implementing the Offline Phase of Protocols with Preprocessing 44
6.1 SPDZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Generating SPDZ Triples . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
EncCommit: covert security . . . . . . . . . . . . . . . . . . . . . . . . . 47
EncCommit: active security . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 BeDOZa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 TinyOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Generating Pair-wise Tags . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Exploiting the Output of FaBit . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Specific Protocols for Private Set Intersection 55
7.1 Notation and Security Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Public-Key-Based PSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2.1 Diffie-Hellman-Based PSI . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2.2 RSA-Based PSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 Circuit-Based PSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3.1 Sort-Compare-Shuffle Circuit for PSI . . . . . . . . . . . . . . . . . . . . 57
7.3.2 Optimized Circuit-Based PSI . . . . . . . . . . . . . . . . . . . . . . . . 58

7.4 OT-Based PSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4.1 The Bloom Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4.2 Garbled Bloom Filter-Based PSI . . . . . . . . . . . . . . . . . . . . . . 59
7.4.3 Random GBF-Based PSI . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.4.4 Private Set-Inclusion and Hashing . . . . . . . . . . . . . . . . . . . . . . 60

The Basic PEQT Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Private Set Inclusion Protocol . . . . . . . . . . . . . . . . . . . . . . . . 61
The OT-Based PSI Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.5 Experimental Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.5.1 Benchmarking Environment . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.5.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8 Universal Verifiability 65
8.1 Making Secure Computation Universally Verifiable . . . . . . . . . . . . . . . . 66
8.2 Practical Verifiable Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.2.1 Arguments and Probabilistically Checkable Proofs . . . . . . . . . . . . . 68
8.2.2 Practical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.2.3 State of the Art Protocols and Implementations . . . . . . . . . . . . . . 69

The IKO Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Interactive Proofs for Muggles . . . . . . . . . . . . . . . . . . . . . . . . 70
Quadratic Arithmetic Programs . . . . . . . . . . . . . . . . . . . . . . . 71

8.3 Universally Verifiable Secure Computation . . . . . . . . . . . . . . . . . . . . . 71

9 Summary and Conclusions 73

10 List of Abbreviations 75
b
b

PRACTICE D11.1 Page IV



D11.1 - A Theoretical Evaluation of the Existing Secure Computation Solutions

List of Figures

2.1 Categories of usage models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Abstract usage models of secure computing . . . . . . . . . . . . . . . . . . . . . 10
2.3 Levels of implementation maturity . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Categories for programming paradigm . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Categories of application development tools . . . . . . . . . . . . . . . . . . . . 13
2.6 Levels of performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Transforming one of P2’s input wires (Step 0 of the protocol). . . . . . . . . . . 25
4.2 The commitment sets corresponding to P1’s first input wire. . . . . . . . . . . . 28
4.3 In every check-set, the commitment to the indicator bit, and the commitments

corresponding to check-circuits are all opened. . . . . . . . . . . . . . . . . . . . 29
4.4 P1 opens in the evaluation-sets, the commitments that correspond to its input.

In every evaluation-set these commitments come from the same item in the pair. 30

6.1 The protocol for sharing m ∈ Rp on input cm = Encpk(m). . . . . . . . . . . . . 46
6.2 Production of tuples and shared bits. . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Ideal Two-party Bit Authentication [99] . . . . . . . . . . . . . . . . . . . . . . 51
6.4 Leaky Pairwise Authentication From Oblivious Transfer . . . . . . . . . . . . . . 52
6.5 Reducing FaBit to Amplified πLaBit . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.6 Transforming Two-party Representations into [·]iα-representations . . . . . . . . 54

7.1 Runtime and communication of the outlined PSI protocols for n = 218 elements
of σ = 32-bit length using κ = 128-bit security. . . . . . . . . . . . . . . . . . . 63

b
b

PRACTICE D11.1 Page V



D11.1 - A Theoretical Evaluation of the Existing Secure Computation Solutions

List of Tables

3.1 Properties of protocols based on arithmetic secret sharing (passive security). . . 19
3.2 Properties of Yao’s protocol and its variants (passive and active security). . . . . 19
3.3 Properties of the GMW protocol (passive security). . . . . . . . . . . . . . . . . 20
3.4 Properties of protocols based on fully homomorphic encryption (passive security). 20

7.1 NIST recommended key sizes for symmetric cryptography (SYM), finite field
cryptography (FFC), integer factorization cryptography (IFC), elliptic curve
cryptography (ECC) and hash functions. . . . . . . . . . . . . . . . . . . . . . . 56

b
b

PRACTICE D11.1 Page VI



D11.1 - A Theoretical Evaluation of the Existing Secure Computation Solutions

Chapter 1

Introduction

In a distributed computing setting, several distinct parties wish to jointly compute some func-
tion of their respective inputs. Secure multi-party computation (or MPC in short) is a distributed
computation that is run between several parties which have confidential inputs, and that must
be secure even in the face of participants that are deliberately trying to “attack” the correct
operation of the protocol. These participants might attempt, for example, to learn the inputs of
other parties, or to affect the result of the computed function. To give a sense of the motivation
for using secure computation and of settings where secure computation is called for, we briefly
list here some exemplary scenarios. (A detailed analysis of settings in which secure multi-party
computation can be useful appears in Chapter 2.)

• Data analysis: Two or more parties have large private data sets (say, the parties are
hospitals and the data is medical records). They wish to run some data-mining algorithm
on the union of their data sets, but must do that without revealing the data itself. That
is, they need to learn the result of the data-mining algorithm, but do so without disclosing
any other information about the private data sets.

• Outsourced data: One or more parties store their data encrypted on a remote server (or
on several such servers). They then wish to compute some function of the data where the
bulk of the computation is performed on the server side, but without disclosing the data
itself to the servers.

• Auctions: A large number of bidders participate in a sealed-bid auction. Bids must be
submitted by a specific deadline. We wish that the auctioneer, who decides the result of
the auction, can do that without learning the values of the bids.

1.1 Security

Desired properties. Since the computation involves different parties that might have dif-
ferent motivations, it cannot be ruled out that some of these parties might behave maliciously
in order to learn information about the private inputs of other parties, or in order to change
the result of the computation. We must therefore assume that there might be an adversary
that controls one or several of the parties participating in a secure computation protocol, and
we must ensure that the protocol is secure even in this case. There are several properties that
seem to need to be protected in order for the protocol to be secure.

• Privacy: No party should learn anything more than its prescribed output. That output
might enable to learn something about other parties’ inputs, but this seems inevitable.b

b
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For example, in an auction where the output contains the highest bid, it is possible to
derive from this output that all other bids were lower than the winning bid. However,
this should be the only information revealed about the losing bids.

• Correctness: The protocol must ensure that the correct function is computed. For ex-
ample, in the case of the auction the winner must indeed be the highest bidder, and no
corrupt behavior can make the protocol announce that another party is the winner.

• Independence of Inputs: Corrupt parties must be prevented from setting the value of the
their inputs to depend on the inputs of other parties. Note that the fact that a protocol
guarantees the privacy of the inputs does not necessarily guarantee the independence of
the inputs (and therefore additional care must be taken to ensure the latter property).
For example, a corrupt auction participant must not be able to behave in the protocol in
a way that sets its input to be one Euro higher than the maximum of all other bids. Note
that even if private is guaranteed, additional measures

• Fairness: The protocol must prevent a scenario where a corrupted party receives its
output while honest parties do not receive their outputs. This property can be crucial,
for example, for a protocol where a money transfer is exchanged for a receipt. There it
must not occur that one party receives the transfer while the other party does not receive
the receipt.

• Verification: It should be able to verify the correctness of a protocol run, even by parties
different than the parties which executed the protocol.

It must be emphasized that not all protocols satisfy all these properties, but this list of properties
does serve as a desired goal for secure multi-party protocols.

1.1.1 Security definitions

The standard definitions that are used today for defining security do not try to separately
satisfy each of the aforementioned properties, but rather use the following “holistic” approach:
Consider an “ideal world” in which an external trusted party is willing to help the parties carry
out their computation. In such a world, the parties can simply send their inputs to the trusted
party, who then computes the desired function and sends the outputs back to the parties. Since
the only action carried out by a party is that of sending its input to the trusted party, the only
freedom given to the adversary is in choosing the corrupted parties inputs. Notice that all of
the above-described security properties hold in this ideal computation. For example, privacy
holds because the only message ever received by a party is its output (and so it cannot learn
any more than this). Likewise, correctness holds since the trusted party will always compute
the function correctly.
Of course, in the “real world” there is no external party that can be trusted by all parties.
Rather, the parties run some protocol among themselves without the help of any external
trusted party. The goal of secure computation is to ensure that an adversary in this real world
cannot cause more harm than in the ideal world (i.e., can only decide its input to the protocol,
and try to learn something from the output that it receives). Therefore, the security definitions
requires the following property: A real protocol that is run by the parties (in a world where no
trusted party exists) is said to be secure if no adversary can do more harm in a real execution
than in an execution that takes place in the ideal world. This can be formulated by saying that
for any adversary carrying out a successful attack in the real world, there exists an adversary
b
b
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that successfully carries out the same attack in the ideal world. However, successful adversarial
attacks cannot be carried out in the ideal world and therefore no such attacks can occur in the
real world.
Security was rigorously defined in the cryptorgaphic literature. Detailed definitions of security
can be found, e.g., in [52, 58]. In these formal definitions the security of a protocol is established
by comparing the result of a real protocol execution to the outcome of an ideal computation.
That is, for any adversary attacking a real protocol execution, it must be shown that there exists
an adversary attacking an ideal execution (one that is run with the help of a trusted party)
such that the input/output distributions of the adversary and of the participating parties in
the real and ideal executions are essentially the same. This formulation of security is called
the ideal/real simulation paradigm. In order to motivate the usefulness of this definition, we
describe why all the properties described above are implied.

• Privacy follows from the fact that the adversary’s output is the same in the real and ideal
executions. Since the adversary learns nothing beyond the corrupted party’s outputs in
an ideal execution, the same must be true for a real execution.

• Correctness follows from the fact that the honest parties outputs are the same in the real
and ideal executions, and from the fact that in an ideal execution, the honest parties all
receive correct outputs as computed by the trusted party.

• Regarding independence of inputs, notice that in an ideal execution, all inputs are sent
to the trusted party before any output is received. Therefore, the corrupted parties know
nothing of the honest parties inputs at the time that they send their inputs. In other
words, the corrupted parties inputs are chosen independently of the honest parties inputs,
as required.

• Fairness holds in the ideal world because the trusted party always returns all outputs.
The fact that it also holds in the real world again follows from the fact that the honest
parties outputs are the same in the real and ideal executions. (It should be noted that
while the fairness property can be satisfied in principle, it is often quite inefficient to
satisfy in protocols that aim to be practical.)

1.1.2 Adversarial power

Any security definition must also consider the power of the adversary that attacks a protocol
execution. An adversary might control a subset of the parties participating in the protocol,
and might operate in different ways. The analysis usually considers a worst case scenario
where a single adversary controls multiple parties and can ensures that they collaborate in
the adversary’s favor (this situation is worse than that of multiple corrupt parties operating
independently of each other).

Allowed adversarial behavior. There are different behaviors that an adversary might dic-
tate to the parties that it controls:

• Adversaries that are denoted as semi-honest or passive, do not change the way in which
the corrupted parties (that are controlled by them) participate in the protocol. That is,
these parties correctly follow the protocol specification. However, the adversary obtains
the internal state of all the corrupted parties (including the transcript of all the messages
received), and attempts to use this to learn information that should remain private.b

b
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This is a rather weak adversarial model. However, there are some settings where it can
realistically model the threats to the system. Semi-honest adversaries are also sometime
called honest-but-curious.

The semi-honest model might model a scenario where protocol participants are honest
during the protocol execution, but might become corrupted by adversary after the end of
the protocol. At that stage the adversary gets to see the logs and audits of the protocol
execution, and tries to learn information from these records. Moreover, it is not trivial to
obtain security even against this weaker model of corruption, and therefore this problem
is interesting as a first step before devising protocols that are secure against stronger
adversarial behavior.

• Malicious, or active adversaries have full control over the corrupt parties, and these par-
ties can arbitrarily deviate from the protocol specification, according to the adversary’s
instructions. In general, providing security in the presence of malicious adversaries is
preferred, as it ensures that no adversarial attack can succeed. However, providing this
level of security might be more difficult or costly compared to providing security against
semi-honest adversaries.

• Security against covert adversaries defines a security level that often results in a reasonable
tradeoff between security and efficiency. Covert adversaries, defined in [4], have full control
over corrupt participants but also attempt to avoid being detected. A covert adversary
with deterrence factor of ε will choose not to cheat if the probability of it being detected
is greater than ε. In many settings where there are long lasting relationships between
parties, the deterrence factor can be quite high, say 1% or 50%. (Whereas malicious
adversaries might try to cheat even if their probability of success is much lower.) The
overhead of protocols secure against covert adversaries becomes smaller as the deterrence
factor grows, since the protocols can tolerate cheating to go unnoticed, as long as this
happens with probability smaller than ε.

Complexity. The computational complexity of the adversary is an additional parameter of
its power.

• Polynomial-time complexity is the common bound used in the theory of computer science
for defining efficient computation. Therefore it is assumed that the adversary is allowed
to run in (probabilistic) polynomial-time (that is, a run time that is a polynomial function
of a security parameter, which is typically the length of the cryptographic keys used by
the system). This means, for example, that the adversary cannot perform computations
that take super-polynomial time (e.g., exponential time). For example, the adversary will
not be able to break the security of common encryption algorithms, such as AES or RSA.
(An adversary running in exponential time will be able to break these ciphers by simply
enumerating over all possible encryption keys.)

• A stronger security model assumes that the adversary is computationally unbounded. In
this model, the adversary has no computational limits; it can, for example, run arbitrarily
long brute force attacks and break any encryption scheme that does not have information
theoretic security. This model seems too powerful, but can be useful for ensuring that
a protocol is secure even against future advances in cryptanalysis and in computational
power. In some cases, it is indeed possible to design multi-party protocols that are
information theoretically secure against computationally unbounded adversaries.

b
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Corruption strategy. There are two main ways in which the adversary might corrupt the
parties participating in the protocol.

• In the static corruption model the adversary decides in advance, before the start of the pro-
tocol, on a fixed set of parties whom it controls. Honest parties remain honest throughout
the protocol, and corrupted parties remain corrupted.

• In the adaptive corruption model, rather than having a fixed set of corrupted parties, the
adversary is able to dynamically corrupt parties during the computation. The choice of
who to corrupt, and when, can be arbitrarily decided by the adversary and may depend
on its view of the execution (for this reason it is called adaptive).

The static corruption case seems quite satisfactory for most scenarios, in particular for protocols
that are not used as building blocks for higher level protocols. Achieving security against
adaptive adversaries is typically quite costly in terms of performance.

1.2 Secure Multi-Party Protocols (MPC)

The definitions of secure computation seem rather ambitious, and therefore it is unclear (or
at least it was not initially clear) whether achieving these security definitions is feasible. (By
feasible we mean a protocol that satisfies the security definitions and runs in polynomial time.
Feasibility results do not address any detailed performance analysis.) Feasibility research defines
the boundaries of secure multi-party computation. Afterwards, much additional work is required
in order to improve protocol performance. We therefore first describe basic feasibility results
in secure multi-party computation, and then discuss actual secure multi-party protocols.

1.2.1 Feasibility of Secure Multi-Party Computation

Strong feasibility results have been established for different variants of secure multi-party com-
putation. In order to describe these results, let us denote by n the number of parties par-
ticipating in the protocol, and denote by t a bound on the number of parties that may be
corrupted.

• For t < n/3, secure multi-party protocols with fairness can be achieved for any function in
a point-to-point network and without any requirement for a trusted setup of the system.1

This result can be achieved both in the setting where the adversary is computationally
bounded (i.e., the computational setting) [53] (assuming the existence of enhanced trap-
door permutations), and with a computationally unbounded adversary (assuming that
there are private channels between any two parties [16, 28].

• For t < n/2 (i.e., in the case of a guaranteed honest majority), secure multi-party protocols
with fairness can be achieved for any function assuming that the parties have access to a
broadcast channel. This can be achieved in the computational setting [53] (with the same
assumptions as above), and in the information-theoretic setting (i.e., against adversaries
that are computationally unbounded) [110].

1The fairness property is rather unique among the other security properties in that achieving the full notion
of fairness is either impossible in some settings (although weaker notions of fairness are possible), or is rather
expensive.

b
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• For n/2 ≤ t < n(i.e., when the corrupted parties can include all parties but one), secure
multi-party protocols (without fairness) can be achieved assuming that the parties have
access to a broadcast channel (and in addition assuming a stronger assumption about the
existence of enhanced trapdoor permutations) [124, 53, 52]. These feasibility results hold
only in the computational setting; analogous results for the information-theoretic setting
cannot be obtained when t ≥ n/2 [16].

This set of results shows that secure multi-party protocols exist for any distributed computing
task. In the computational model, this holds for all possible numbers of corrupted parties.
When, in addition, no honest majority exists, fairness is not obtained. All these results hold with
respect to malicious adversaries, as well as for semi-honest adversaries. The status regarding
adaptive versus static adversaries is more involved and is therefore omitted here.

1.2.2 Protocols

The initial work on secure multi-party computation was carried out in the late 80s and early 90s,
and focused on feasibility results. The main research goal during that period was to establish
which tasks can be computed securely and at which (asymptotic) cost. The typical research
agenda of that time was influenced by complexity theory. Issues of concrete efficiency and
implementation were not addressed at that time. In general, research at that time followed the
following general lines:

• Each computation that can be efficiently computed by a program (i.e., computed in
polynomial time), can also be computed by a Boolean or arithmetic circuit of polynomial
time. It is therefore sufficient to focus on investigating secure computation for circuits of
these types.

• Each Boolean circuit can be composed of AND and NOT gates alone. Similarly, each
arithmetic circuit can be composed of gates computing addition and multiplication in
some field. Therefore it is sufficient to focus on designing secure computation protocols
for these types of gates, and composing them together.

• The important factor is the asymptotic overhead of the computation, rather than the
constants. Therefore there is no need to optimize the protocols in order to reduce the
constants that are incurred by the computation.

• There were attempts to understand and optimize some issues of the computation. These
included the cryptographic assumptions on which security based based; the number of
parties that can be corrupted by the adversary (the more corrupted parties the harder it
is to ensure security); and the number of rounds of the computation.

Security against malicious adversaries

An example of the research agenda of the early days of research in secure multi-party computa-
tion is the way in which security against malicious adversaries was solved. Designing protocols
that are secure against semi-honest adversaries was by itself a formidable task. Once such
protocols were designed, it was shown by Goldreich, Micali and Widgets [53] how to “com-
pile” any protocol secure against semi-honest adversaries to a protocol secure against malicious
adversaries.
The transformation was achieved using zero-knowledge proofs. These proofs, initially formu-
lated in [54], enable to prove the correctness of any NP statement in a way that reveals nothingb
b
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but the fact that the statement is correct. (For example, one could use these techniques to
prove that it knows the factorization of a number without revealing any information about the
factorization itself.) Now, recall that a semi-honest adversary is one which follows the protocol
whereas a malicious adversary might behave arbitrarily. The generic transformation operates
in the following way:

• Design a protocol secure against semi-honest adversaries.

• The protocol defines for each party Pi a program Progi that Pi must run. The input
to this program is the private input of this party, the randomness that it uses, and the
messages it receives from other parties. Given these values the output of Pi is defined by
Progi in a deterministic way. This program Progi is publicly known.

• Consider the following NP statement that can be given by Pi: “There exist a private
input and internal randomness, such that the messages that I sent during the protocol
execution are the output of Progi given these values and the messages I received from
other parties”.

• Party Pi can therefore use zero-knowledge proofs to prove this statement without revealing
any information about its inputs.

• That is, Pi proves that it behaves as a semi-honest adversary. The protocol that is run is
secure against this type of behavior.

This approach is elegant and very powerful. It is also efficient in the sense that it runs in
polynomial time. However, the actual runtime and space complexity of the proofs can be huge
(albeit polynomial): The statement is usually translated to a statement in an NP-complete
language, such as graph colorability or 3-SAT. This transformation requires to express the
statement as a Turing machine program or as a Boolean circuit, and then transform the result
to, e.g., a 3-SAT problem. The constants factors that are incurred by this approach are huge.

Recent work

More recently it was realized that the overhead of secure multi-party computation is actually
quite feasible for many tasks that are of practical interest. As a result, more research has
been invested in improving the overhead of secure computation protocols, resulting in huge
improvements in their overhead.
One of the first results in this new line of work is a protocol for privacy preserving auctions [95]
that hides the values of the bids even from the auctioneer itself. The protocol encoded the
auction algorithm as a Boolean circuit (which is of a very reasonable size, since comparison
operations can be implemented by sub-circuits whose size is linear in the length of the numbers
that are compared). The protocol was implemented and run in a reasonable time.
A major boost for research on the efficiency and ease of development of secure multi-party
protocols came with the Fairplay project [85]. That project developed a generic tool for secure
two-party computation, consisting of (1) a high-level programming language for describing
the function that needs to be computed; (2) a compiler translating programs written in this
language to Boolean circuits; and (3) programs for the two parties to actually run Yao’s secure
two-party protocol on the resulting circuit. In doing so, the Fairplay project demonstrated that
it is possible to transform the field of secure computation from a set of mathematical theorems
to a set of tools that can be used by end-users who need not be familiar with the underlying
cryptographic ideas and tools.b
b
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A strong indication of the feasibility and of the utility of secure multi-party computation was
shown by work in Denmark on a secure protocol for auctions of sugar beets. That work resulted
in a secure protocol that is run in practice until these days between farmers and the sugar beet
processor, and sets the clearing price for sugar beets [24].
The initial work on implementations of multi-party protocols motivated new research directions
in MPC technology:

• Optimizing the constants. The fact that secure multi-party protocols can be run in prac-
tice, motivated research into optimizing the actual run time of the protocols. In particular,
it was obvious that it was important to optimize the constant coefficients of the overhead,
rather than only care about the asymptotic overhead. For example, there are results on
reducing, by a factor of 25%− 50% the size of the data that has to be communicated and
the number of operations that have to be performed per gate [107, 76]. It was also shown
how Yao’s protocol for secure two-party computation can compute XOR gates essentially
for free [75]. As a result, it makes sense to change the design of circuits so that they use a
minimal number of gates that are different than XOR, even if this results in an additional
number of XOR gates.

• Security against malicious adversaries. There were new research efforts to design efficient
protocols that are secure against malicious adversaries. These efforts were motivated
by the fact that security against malicious adversaries is required in many scenarios,
and since the existing techniques, namely the GMW compiler based on generic zero-
knowledge proofs, were extremely inefficient. Initial results, using the so called cut-and-
choose methodology were shown in [81, 83, 82]. Many results followed.

• Offloading work to a preprocessing phase. Another approach for optimization is to offload
the bulk of the overhead to a preprocessing phase that can be run before the parties
learn their inputs. The rest of the computation (the online phase) can then become
extremely efficient. This approach was first suggested by Beaver [12] and referred to
as “Beaver triples’”, is used by many state-of-the-art protocols for secure computation
between many parties (in particular the protocols that we present in Chapters 5 and 6,
namely the SPDZ protocol and its variants).

Another very effective approach, denoted as “oblivious transfer extension”, handles a
cryptographic primitive known as “oblivious transfer”, which was the performance bot-
tleneck of many secure protocols. It was observed that precomputing a small number of
oblivious transfers in a preprocessing phase enables to compute all future oblivious trans-
fers very efficiently, using symmetric key cryptography alone [11]. This idea was later
optimized [64, 3] and is used in many recent implementations of secure computation.

• Implementation friendly protocols. The performance of secure multi-party protocols can
be greatly improved by taking into account systems issues, and changing the protocols to
make the best use of the available resources. For example, the protocols can use the AES-
NI instruction that is available in modern Intel chips. They can further optimized if there
is no need to perform frequent AES key changes (since AES key scheduling slows down
performance), and if pipelining can be used. Furthermore, the protocols can be designed
to benefit from using multi-core architectures or GPUs. In addition, circuits that are very
large might not naively fit in main memory. Efficient implementations should overcome
this issue.

b
b
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Chapter 2

A Taxonomy of Secure Computation
Settings and Solutions

2.1 Introduction

Work on categorizing secure computation techniques has typically concentrated on the formal
(e.g., cryptographic, complexity-theoretic) properties of the individual schemes. A good recent
classification on the topic has been provided by Perry et al. [106]. In PRACTICE, we extend
this systematization with categories that focus on the practical use of secure computation in
real-world applications.
The PRACTICE project has described several application models that benefit from secure
computation scenarios [57]. These models are based on both academic prototypes and real world
deployments. However, not all secure computation techniques can support each application
model. Therefore, we will define three general usage models that every known application fits
into. Later, we will assign one or more categories to each secure computation technique. These
assignments suggest, what kind of applications does the particular technology support best.
In this deliverable, we describe a wide range of cryptographic techniques for secure computation.
Not all of them, however have been implemented or used in practice. Therefore, we will assign a
maturity of runtime category to each technique. This category will indicate the engineering
level of the best publicly known implementations of runtimes. Similarly, we will describe the
kind of application development tools for each technique.
A developer considering the use of secure computation should also be aware of possible pro-
gramming paradigm for a given tool. This information can greatly influence the choice as some
techniques are significantly more efficient with certain types of problems. Therefore, we will
list the programming paradigm for each secure computation technique.
The number of published secure computation techniques is large and growing, but not all of
them have accompanying practical implementations in software or hardware. Schemes with
great complexity-theoretic properties can be hard to implement in practice for various reasons.
Once implemented, the performance of the system may not be suitable for practical applications.
In this classification, we will assign the performance level category to secure computation
techniques to denote the performance level of implementations available in practice.

2.2 Usage models

In deliverable D12.1 [57], we described secure computation applications according to the flow of
private data among parties. We will now use the same model to describe three usage categories.b
b
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Note that these categories are non-exclusive as a secure computation paradigm can be suitable
for many uses.

Outsourced 
computation on 
one's own data

Outsourced 
computation on 
collected data

Computation on 
shared data

Figure 2.1: Categories of usage models
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(a) Process own data
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(b) Process collected data

I C R SC

(c) Process shared data

Figure 2.2: Abstract usage models of secure computing

Usage model 1: Outsourced computation on one’s own data. In this category, we have
use-cases where a data owner has data that needs to be processed and wants to outsource such
processing to a service. This clearly represents the most common cloud computing scenarios
where an individual or an organization outsources computation to a service provider. Secure
computation is needed here to ensure that the service does not learn the confidential information
or leak it to third parties.
The model is shown on Figure 2.2a. The input party encrypts its input data and sends it to the
computing party (e.g., a cloud service provider) who processes the data without decrypting it
during the process. Once the computation has been completed, the encrypted result is returned
to the data owner who can decrypt it. Relevant secure computation techniques for this category
include homomorphic encryption, property-preserving encryption and trusted hardware.

Usage model 2: Outsourced computation on collected data. The second category
handles the situation where the party who needs to process the data does not have the data
and needs to collect it. This scenario occurs in surveys, government statistics, social studies,
medical research, auctions, and a wide range of corporate activities. Secure computation is
needed to ensure that nobody except for the data owner has access to the data but, at the same
time, data utility is retained.
The model in Figure 2.2b differs from the previous model in the way that the input parties
I and the result parties R are separated from each other. This is to signify the fact that the
I parties do not trust the R parties. Examples of suitable secure techniques for outsourced
computation on collected data include property-preserving encryption and secure multi-party
computation based on secret sharing or garbled circuits.

Usage model 3: Computation on shared data.
The final of the three categories describes applications where similar parties combine their in-
formation to jointly learn new things. These scenarios occur in industrial consortiums, research
collaborations and joint activities between coalitions of nations. Secure computations allow
partners to share data while ensuring control of this data during its processing. The latter
b
b
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is achieved by having all parties participate in the actual computation (i.e., all parties being
computing parties).
This model is shown on Figure 2.2c. Each party fulfils all roles by providing an input, con-
tributing to the computation and benefiting from the results.

These models are abstract and can have modifications. E.g., in model of computation on
shared data, not all parties may want to become computing parties, but will be happy with
just providing inputs and learning outputs (and trust that the number of computing parties
which is corrupt is limited, and therefore they are unable to breach the protocol). In all these
settings, the computing parties (the C nodes) can be deployed on the cloud, because secure
computation guarantees that the computing parties do not learn the private inputs.

2.3 Maturity of implementation

Secure computation implementations consist of various components, including the software -
hardware for performing the cryptographic operations on data and the developer tools used
to create applications. This category describes the readiness of a complete implementation for
practical use. This evaluation is performed based on the capability to deploy the system in
real applications. Figure 2.5 shows the progression of the levels towards the level of greater
maturity.

Ready for
industrial use

Real-world
applications

Academic
prototype

Theoretical 
construction

Figure 2.3: Levels of implementation maturity

Maturity level 1: Theoretical construction.
Theoretical constructions are schemes that are described in research papers, but no reusable
implementations are available. On this level, there are secure computation techniques for which
the protocols are published, but no published implementation is known 1. Maturity level 1
corresponds to Technological Readiness Levels 1 to 22

Maturity level 2: Academic prototype.
Academic prototypes are developed by researchers to study a new secure computation technique,
its costs and complexities. They often accompany research papers and provide preliminary
performance metrics. These prototypes maybe short-lived, just to support a certain research
paper. However, some such implementations persist and extend to provide support for many
papers. Maturity level 2 corresponds to Technological Readiness Levels 3 to 4.
Notable examples of often reused research platforms for secure computation include Fair-
play [47], SCAPI [45], Sharemind [116], TASTY [118] and VIFF [120].

Maturity level 3: Real-world applications.

1All decisions on whether an implementation is known, have been checked before the publication date of the
deliverable. It is also possible that the authors may have missed a certain paper or published implementation.
The authors will be thankful to learn of such omissions and to correct them.

2U.S. Department of Defense Technological Readiness Assessment (TRA) Guidance. http://www.acq.osd.
mil/chieftechnologist/publications/docs/TRA2011.pdf
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The development of real-world applications requires both technical and administrative excel-
lence, as one has to meet end user acceptance and compliance goals. Until now, practical secure
computation application have been mostly developed by research teams, using improved ver-
sions of academic prototypes. Still, secure computation applications with real-world stakeholder
require significant effort over such prototypes. Maturity level 3 corresponds to Technological
Readiness Levels 5 to 6.
The first practical real-world application of secure computing was the double auction for sugar
beet producing contracts held in Denmark in 2008 [24]. Since then, more applications have
been deployed, e.g. for financial reporting in an Estonian consortium of ICT companies [23].

Maturity level 4: Ready for industrial use.
Once an implementation has been used in several real-world applications, its developers can
consider initiating a technology transfer process and make the tools available to the general
public. As these levels are based on practical capability, it makes no difference whether the
offering is based on a commercial or an open-source license. Maturity level 4 corresponds to
Technological Readiness Levels 7 to 9.
At the time of writing this report, two companies are known to provide services based on
cryptographic secure computation–Cybernetica3 in Estonia and Partisia4 in Denmark.

2.4 Programming paradigms

Secure computation systems have different programming approaches, based on the kind of
protocols that are used. This information is useful for application developers as it can indicate
how easy it would be to extend the system or to provide it with new features. For example, the
development tools for Boolean circuits are fundamentally different than custom set intersection
protocols. The different programming paradigms are described below and in Figure 2.4.

Compiled circuits Interpreted programs Task-specific
protocols

Figure 2.4: Categories for programming paradigm

Programming paradigm category 1: compiled circuits.
Boolean and arithmetic circuits are representations of a computing task inspired from electron-
ics. Indeed, one can imagine a Boolean circuit as an electrical circuit in a processor. Boolean
circuits operate on a bit level with logical operations and are, therefore, very compact represen-
tations of a computing task. Arithmetic circuits work on elements of a group, ring or field and
use the arithmetic operations available. The common property of circuits is that they represent
the complete secure computing task on a low level.

Programming paradigm category 2: interpreted programs.
With interpreted programs, the secure computing task is constructed from more complex secure
primitives than arithmetic or logic. This is to reduce the amount of copying low-level circuits
throughout the whole computation. This can make the application less efficient. However, it can
also significantly simplify their development and execution, if the protocols with the necessary

3Cybernetica AS http://www.cyber.ee
4Partisia Market Design ApS http://www.partisia.comb
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security and composability properties are used. Such programs are typically evaluated on a
virtual machine that executes secure computation primitives (e.g., Boolean circuits, algebraic
protocols) on demand.

Programming paradigm category 3: task-specific protocols.
Tailored secure computation protocols exist for tasks like set intersection, frequent itemset
mining etc. These protocols only perform the necessary task and are, therefore, harder to
combine with other secure computation operations. However, their efficiency and compactness
can easily justify their use. For example, it is more trivial to audit a protocol that does just
one thing than a fully generic secure computation runtime.

2.5 Application development tools

When a secure computation system has been developed, it needs to be tailored for particular
applications. With better tools, this tailoring becomes easier and requires less skilled labor and
time. However, too much automation reduces flexibility and can reduce the usefulness of the
tools. The following categories are not mutually exclusive as a secure computation technique
could be programmable with several toolkits.

Hand-modified
implementation

Embedded
DSL

Compiled 
language

Application
libraries

Figure 2.5: Categories of application development tools

Development tool category 1: hand-modified implementation.
In the simplest case, one directly modifies the secure computation runtime to integrate it with
an application. This is the most time-consuming, but also most flexible approach. It is mostly
used in academic projects.

Development tool category 2: embedded domain-specific language.
With an embedded DSL, some complexity of the secure computation paradigm can already be
hidden from the application developer. Embedded DSLs allow the developer to describe the
algorithm or business process and then translate it into the cryptographic operations under-
neath.

Development tool category 3: compiled language and interpreter.
A separate compilable language further separates the secure computation paradigm from the
developer. An application written and compiled in such a language will later be interpreted by
an interpreter or virtual machine that schedules the necessary secure computation primitives
as required.

Development tool category 4: libraries of application-specific functionality.
Nearly all modern software is not developed from scratch with just the programming language.
Instead, it is built on the foundation of other libraries. Once secure computation becomes
easily programmable, the next step of the evolution is to create reusable libraries that speed up
development. For example, these can be libraries in the programming language of the secure
computation system.
b
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2.6 Performance level

There is no established way for fairly comparing the performance of different secure computation
systems. Each has its own bottlenecks and tasks that it can efficiently perform. Therefore, we
have established our performance categories based on the best/most complex application or
primitive that has been demonstrated in published literature. We also consider problems that
are suitable for the particular secure computing system.

Algorithmic
tasks

feasible

Single 
operations

feasible

Theoretical
result

Real-world
applications

feasible

Figure 2.6: Levels of performance

Performance level 1: theoretical result.
This, simplest of categories, means that the result has not been implemented in practice and
is, therefore, theoretical. Even if the research paper contains a good (e.g., constant overhead)
complexity analysis, we cannot be sure of the performance until we have validated that constant
in practice.

Performance level 2: single operations feasible.
The minimal implementation of a secure computing system typically picks a suitable primitive,
implements and benchmarks it. Examples include secure arithmetic for systems based on
homomorphic cryptography and a comparison or string algorithm for garbled circuits. At this
level, we have systems that have published such a result and did not need extensive resources
to complete. 5

Performance level 3: algorithmic tasks feasible.
Belonging to the next level requires that the system can algorithmically combine secure op-
erations to complete a non-trivial operation, e.g. sorting, clustering etc. We do not require
a specific primitive, but some task that is suitable for the particular system. This category
can be assigned to systems that have published results of experimentation with a non-trivial
algorithm that uses branching and/or loops and composes several primitive operations. Again,
we require that the resource use is not extensive.

Performance level 4: real-world applications feasible.
Real-world feasibility means that there is a use-case study or prototype application that demon-
strates performance that is acceptable for end users. This is proven either by building the
application and reporting successful real-world use, or showing a justified analysis showing that
the resource usage is acceptable for an end user with realistic datasets.

5We interpret “extensive resources” (somewhat arbitrarily) as hardware and setup costing more than e 100
000 by current prices.b
b
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Chapter 3

Generic Constructions Secure Against
Semi-Honest Adversaries

This chapter outlines the main generic secure multi-party computation constructions that are
secure against semi-honest (passive) adversaries: Yao’s garbled circuits (Section 3.2) proto-
col for two-party secure computation [125]; the protocol of Goldreich, Micali and Wigderson,
which is often referred to as the GMW protocol [53] (Section 3.3); and the protocol of Ben-Or,
Goldwasser and Micali (the BGW protocol) [16]. The Yao and GMW protocols express the
function to be computed as a Boolean circuit, and are secure based on standard assumptions in
cryptography, similar to the hardness of computing discrete logarithms or factoring large num-
bers (these assumptions are also used to argue the security of standard public-key encryption
schemes). The BGW protocol expresses the function that is computed as a arithmetic circuit,
where each gate is an addition or a multiplication in a finite field. This protocol ensures uncon-
ditional security which does not depend on any cryptographic assumption. The Yao and GMW
protocols use a simpler protocol, called oblivious transfer (OT), as an underlying primitive.
We first describe this primitive in Section 3.1. Finally, we give a brief comparison between the
protocols (Section 3.5). Some of our descriptions are based on [112] to which we refer for more
details.

3.1 Oblivious Transfer

Oblivious Transfer (OT) is a cryptographic protocol executed between a sender S and a re-
ceiver R in which R obliviously selects one of the inputs provided by S.
More specifically, in the simplest case of a 1-out-of-2 oblivious transfer (which is also the variant
used by most secure computation protocols), the parties have the following inputs:

• S has two inputs x0, x1. These inputs can be either bits or strings, depending on the
variant of the protocol that is used.

• R has an input bit b ∈ {0, 1}.

At the end of the protocol R learns xb but no other information about x1−b, whereas S learns
nothing.
In the general case, a 1-out-of-n OTm

` protocol is where S provides m n-tuples (x11, . . . , x1n), . . . ,
(xm1, . . . , xmn) of `-bit strings; R provides m selection numbers r1, . . . , rm with 1 ≤ ri ≤ n and
obtains xjrj (1 ≤ j ≤ m) as output.

b
b

PRACTICE D11.1 Page 15 of 85



D11.1 - A Theoretical Evaluation of the Existing Secure Computation Solutions

The widely used Naor-Pinkas OT protocol [94] is secure against semi-honest adversaries under
the Decisional Diffie-Hellman (DDH) assumption in the random oracle model and requires both
parties to perform O(m) modular exponentiations. Protocols also exist for computing OT with
security against malicious (active) adversaries.
There are also additional powerful techniques that can substantially speed up the computation
of OTs.

OT pre-computations The work in [11] showed how to pre-compute OTs on random inputs
before the actual inputs are known, and later, in the online phase, use these pre-computed values
as one-time pads to run OTs on the actual inputs.

OT extension In [64, 78] it was shown how to perform a large number, m, of OTs (namely
OTm

` ) using a small number of t base OTs on t-bit keys (OTt
t), where t is a security parameter

which can typically be set to t = 128. This approach is conceptually similar to the hybrid
approach for encryption where instead of encrypting a large message using a public-key cipher
such as RSA (which would be too expensive), a hybrid encryption scheme is used such that
RSA is only used for encrypting a short symmetric key, and then the long message is encrypted
using symmetric operations only.
The marginal cost for each additional OT in this approach is a small number of evaluations of
a cryptographic hash function (modeled as random oracle) and of a pseudo-random function.
These are very efficient symmetric key operations. More specifically, for each of the m OTs,
S computes n hash evaluations and t(1 + log2 n) pseudo-random bits, whereas R computes
1 hash evaluation and t(1 + n) pseudo-random bits. The communication complexity is one
message from R to S of size mnt bits and one in the opposite direction of size mn` bits. Further
optimizations for OT extension have been proposed in [73] and [3].

3.2 Yao’s Garbled Circuits Protocol

The basic idea of Yao’s garbled circuits protocol [125] is to let one party, called the creator or
the circuit constructor, to encrypt the function to be computed. The function is represented
as a Boolean circuit. The plain 0/1 values on wires are mapped to random-looking symmetric
keys. Namely, for each wire two such random keys are chosen, one representing the 0 value and
the other representing the 1 value. For each gate an encryption table is generated that allows to
compute the gate’s output key given its input keys. For instance, if one has the encryption table
of, say, an AND table, and also has the keys that represent 1 values on each of the two input
wires of the gate, then it is possible to compute the key representing a 1 value on the output
wire of the gate (but no information about the key corresponding to 1 on this wire). For the
same gate, given, say, the key corresponding to 0 on one input wire and the key corresponding
to 1 on the other input wire, it is possible to compute the key corresponding to 0 on the output
wire (but no information about the corresponding to 1 on this wire).
The creator transmits the encrypted circuit along with the keys corresponding to his own inputs
wires to the other party, called the evaluator. The evaluator needs to first obtain the encrypted
wire keys corresponding to his own inputs. He obtains them obliviously by running a 1-out-of-2
OT protocol with the creator. Once he has these keys, he uses them and the keys provided
by the creator to evaluate the encrypted function gate by gate. Finally, the creator provides a
mapping from the encrypted output to plain output. As the evaluation of Yao’s garbled circuits
is performed non-interactively, the resulting protocol has a constant number of rounds.

b
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Yao’s protocol has been extensively investigated. There are various extensions that enhance
the speed of Yao’s garbled circuits protocol: point-and-permute [85], free XOR [75], effi-
cient encryption with a cryptographic hash function [83], garbled row reduction [95, 107],
FleXOR citeKMR14, and pipelining [60]. Together, these techniques allow “free” evaluation
of XOR gates (i.e., no communication and negligible computation); interweaving circuit gener-
ation and evaluation; and, per non-XOR gates, an overhead of performing 4 evaluations of a
cryptographic hash function for the creator, transmission of an encrypted gate table with only
3 entries, and only a single evaluation of a cryptographic hash function for the evaluator. An-
other recently proposed optimization for Yao’s protocol allows to use efficient hardware-based
fixed-key AES for garbling [15].
Yao’s protocol has also been extended to the multi-party setting, most notably in citeBMR90,Ben-
DavidNP08.

3.3 The GMW Protocol

The GMW protocol [53, 52] can be used for secure computation between two or more parties
(whereas Yao’s protocol is specifically for two parties only). We describe here the two party
version of the GMW protocol, run between two parties that can be denoted as P1 and P2. The
two parties interactively compute a function using secret-shared values. For this, the value v
of each input and intermediate wire is shared among the two parties in the following way: each
party holds a random share vi such that v = v1 ⊕ v2. As XOR is an associative operation,
XOR gates can be securely evaluated locally by XORing the shares. Namely, v ⊕ u =
(v1 ⊕ v2) ⊕ (u1 ⊕ u2) = (v1 ⊕ u1) ⊕ (v2 ⊕ u2).
Secure evaluation of AND gates is more complicated. For that purpose the parties run an
interactive protocol using one of the two techniques described below. Note that AND gates of
the same layer in the circuit can be evaluated in parallel. Finally, the parties send their shares
of the output wires to the party that should obtain the output. An implementation of the
GMW protocol was given in [29] for multiple parties and in [112] for two parties.

Implementation based on oblivious transfer, To securely evaluate an AND gate on
input shares v1, v2 and u1, u2, the two parties can run a 1-out-of-4 OT1

1 protocol. Here, the
chooser inputs its shares v1, u1 and the sender chooses a random output share z2 and provides
four inputs to the OT protocol such that the chooser obliviously obtains its output share
z1 = z2 ⊕ ((v1 ⊕ v2) ∧ (u1 ⊕ u2)). As described in Section 3.1, all OTs can be moved into
a pre-processing phase such that the online phase is highly efficient (only two messages and
inexpensive XOR operations).

Implementation based on multiplication triples. An alternative method to securely
evaluate an AND gate on input shares v1, v2 and u1, u2 is to use multiplication triples [10].
Multiplication triples are random shares ai, bi, ci satisfying (c1 ⊕ c2) = (a1 ⊕ a2) ∧ (b1 ⊕ b2).
They can be generated in a setup phase, before the actual inputs are known, using a 1-out-of-4
OT1

1 protocol in a similar way to the OT-based solution described above. In the online phase
the parties use these pre-generated multiplication triples to mask the input shares of the AND
gate, exchange di = vi ⊕ ai and ei = ui ⊕ bi, and compute d = d1 ⊕ d2 and e = e1 ⊕ e2. The
output shares are computed as z1 = (d∧e)⊕(b1∧d)⊕(a1∧e)⊕c1 and z2 = (b2∧d)⊕(a2∧e)⊕c2.
The advantage of multiplication triples over the OT-based solution is that, per AND gate, each
party needs to send only one message (independent of each other) and the size of the messages

b
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is slightly smaller (2 + 2 bits instead of 2 + 4 bits). As shown in [3], a multiplication triple can
be generated efficiently using two random 1-out-of-2 OTs.

3.4 The BGW and CCD protocols

The protocols that are described in this section were designed for a set of n parties with possibly
private inputs that wish to securely compute some function of their inputs in the presence of
adversarial behavior. The BGW [16] and CCD [28] protocol showed that every functionality
can be computed with perfect security in the presence of semi-honest adversaries corrupting
a minority of parties, and in the presence of malicious adversaries corrupting up to a third
of the parties. By perfect security we mean that there is zero probability for cheating by the
adversary, and that security is not based on any cryptographic hardness assumption (such as
the hardness of factoring numbers).
The BGW protocol builds on the GMW protocol. On a high level, the protocol works by having
the parties compute a function (from n inputs) via an arithmetic circuit computing it. The
parties first share their inputs to each other using the secret sharing scheme of Shamir [117]. For
each gate, the parties compute shares of the output of a circuit gate given shares of the input
wires of that gate. For addition gate this operation is simple, since the secret sharing scheme is
linear: each party simply adds its shares of the two input wires to obtain a share of the output
wire. For multiplication gates, the computation of the shares of the output wires requires all
parties to run an interactive protocol between themselves, where each party sends a message
to each other party. Finally, after all gates have been computed, the parties reconstruct the
secrets from the shares on the output wires of the circuit in order to obtain output.

3.5 Comparison

In the following, we briefly compare the protocols that were described in this chapter, using
the features of the taxonomy of Chapter 2.

Similarities All protocols provide cheap (essentially free, using efficient operations and no
communication) computation of linear gates, being XOR gates in Boolean circuit and addition
gates in arithmetic circuits. These computations require no communication. For AND gates,
both the Yao and GMW protocols protocols use efficient symmetric cryptographic operations,
whereas the BGW protocol requires modular addition and multiplication operations. Therefore,
circuits should be optimized in the sense that the number of AND or multiplication gates must
be minimized. Efficient circuits for standard functionalities are summarized for example in
[74, 112].

Differences The main difference is that Yao’s protocol has a constant number of rounds
whereas the GMW, BGW and CCD protocols require the parties to send a message for each
layer of AND gates. Therefore, Yao’s protocol is preferable for networks with high latency. The
main advantage of the GMW protocol is that it is a two-party protocol where all symmetric
cryptographic operations can be precomputed independently of the function that is evaluated
securely and in the online phase only efficient one-time pad operations are needed. Therefore,
the GMW protocol is well-suited for computationally weak devices such as smart phones, cf.
[43].

b
b

PRACTICE D11.1 Page 18 of 85



D11.1 - A Theoretical Evaluation of the Existing Secure Computation Solutions

Arithmetic secret sharing (passive security)

Computation on 
shared data

Outsourced 
computation on 
collected data

Data sharing use-case demonstrated success-
fully in [70, 71] and others. Data collection and
analysis demonstrated in [24, 23] and others.

Ready for
industrial 

use

Companies are providing commercial services
based on the technology (Cybernetica in Esto-
nia, Partisia in Denmark).

Interpreted 
programs

Frameworks like FRESCO, SEPIA, Sharemind
and VIFF use a program-based approach that
can mix public and private computation.

Embedded
DSL

Application
libraries

SEPIA and VIFF have adopted an embedded
DSL approach while Sharemind provides a com-
piler with a library of secure algorithms.

Real-world
applications
feasible

Several real-world uses have been docu-
mented [24, 23].

Table 3.1: Properties of protocols based on arithmetic secret sharing (passive security).

Yao’s two-party protocol (passive and active security)

Computation on 
shared data

Outsourced 
computation on 
collected data

Data is either secret-shared to the two parties,
or subsets of the data are known to each party.

Real-world
applications

Initial commercial prototypes are being devel-
oped.

Compiled circuits
The computed function must be defined as a
circuit.

Hand-modified
implementation

Embedded
DSL

Several academic compilers from a DSL to cir-
cuits exist.

Real-world
applications
feasible

Performance has been highly optimized.

Table 3.2: Properties of Yao’s protocol and its variants (passive and active security).
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The GMW protocol (passive security)

Computation on 
shared data

Outsourced 
computation on 
collected data

Data is either secret-shared to the two parties,
or subsets of the data are known to each party.

Academic
prototype

Some academic prototypes have been devel-
oped.

Compiled circuits
The computed function must be defined as a
circuit.

Hand-modified
implementation

Embedded
DSL

Several academic compilers from a DSL to cir-
cuits exist.

Real-world
applications
feasible

Performance has been highly optimized (but to
a lesser degree than Yao).

Table 3.3: Properties of the GMW protocol (passive security).

Fully homomorphic encryption (passive security)

Outsourced 
computation on 
one's own data

Computation on 
shared data

Outsourced 
computation on 
collected data

Data is either secret-shared to
the two parties, or subsets of
the data are known to each
party.

Academic
prototype

An academic prototype has
been developed at IBM Re-
search.

Compiled circuits
The computed function must
be defined as a circuit.

Hand-modified
implementation

Embedded
DSL

Several academic compilers
from a DSL to circuits exist.

Single 
operations

feasible

Performance has been highly
optimized (but to a lesser de-
gree than Yao).

Table 3.4: Properties of protocols based on fully homomorphic encryption (passive security).
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Chapter 4

The Cut-and-Choose Technique for
Security Against Malicious Adversaries

The two main adversary models that have been considered in the literature are semi-honest
and malicious (the covert adversary model has received considerably less attention). To recall,
a semi-honest adversary follows the protocol specification but attempts to learn more than
allowed by inspecting the transcript. In contrast, a malicious adversary can follow any arbitrary
(probabilistic polynomial-time) strategy in an attempt to break the security guarantees of the
protocol. On one hand, the security guarantees in the semi-honest case are rather weak, but
there exist extraordinarily efficient protocols and implementations for this setting. On the other
hand, security guarantees against malicious adversaries ensure much stronger security, but the
protocols for that setting are considerably less efficient.
In this chapter we will focus on protocols for the two-party setting, where only two participants
wish to run a secure computation between themselves.
There have been considerable research efforts in recent years on designing efficient protocols
secure against malicious adversaries (where the efficiency can be translated to actual efficient
implementations). We list below the main directions that were investigated by this research.

• One approach essentially performs an efficient zero-knowledge proof per gate of the cir-
cuit, proving that it was computed correctly [69, 100]. Each of these proofs requires the
computation of several exponentiations, and the cost of computing these exponentiations
renders this approach inefficient in practice.

• Another approach is based on the MPC-in-the-head technique, which has a very attractive
asymptotic overhead of very few symmetric key operations per gate [68, 67, 80]. However,
there are no implementations of this approach, and the actual constants affecting the
overhead are unknown.

• It is possible to construct a protocol in the random-oracle model with an amortized over-
head of O(s/ log(|C|)) symmetric-key operations per gate, where s is a security parameter
and |C| is the number of gates in the circuit [99, 48]. The number of rounds of this pro-
tocol depends on the depth of the circuit, unlike Yao’s protocol which runs in a constant
number of rounds.

• The protocols of [20, 40, 36] enable secure computation with any number of parties and
are secure even if all but one of the parties are corrupt and collaborate with each other.
Therefore, these protocols can also be applied in the two-party setting. We describe
these protocols in detail in Chapters 5 and 6. The protocols are based on an extensiveb
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preprocessing stage and on the usage of somewhat homomorphic encryption. Here too the
number of rounds depends on the depth of the circuit, and therefore performance might
be affected if the circuit is of large depth and the communication latency is high.

The cut-and-choose approach. A different approach, on which we will focus in this chapter,
is to apply the cut-and-choose approach to Yao’s protocol. Recall that in the basic Yao protocol
one party prepares a garbled circuit, and the other party evaluates that circuit after obtaining,
using oblivious transfer, the wire keys corresponding to its inputs. The cut-and-choose approach
requires the circuit constructor to construct multiple copies of the circuit. The other party then
chooses a random subset of these circuits and asks to verify that they were constructed correctly.
If this test goes well, it proceeds to evaluate the remaining circuit. This basic approach must
be extended to handle many other issues, such as making sure that checking circuits does not
reveal any information about inputs, and, more importantly, verifying that the parties provide
consistent inputs to all circuits.

Basics of the cut-and-choose approach. Assume that party P1 is the circuit constructor,
and the P2 evaluates the circuit. Consider for a moment what happens if party P1 is malicious.
In such a case, it can definitely construct a garbled circuit that computes a function that is
different than the one that P1 and P2 agreed to compute. To prevent this attack, according to
the “cut-and-choose” technique, P1 first constructs many garbled circuits and sends them to P2.
Then, P2 asks P1 to “open” half of them (namely, reveal the decryption keys corresponding to
these circuits). P1 opens the requested half, and P2 checks that they were constructed correctly.
If they were, then P2 evaluates the rest of the circuits and derives the output from them. The
idea behind this methodology is that if a malicious P1 constructs the circuits incorrectly, then P2

will detect this with high probability. Clearly, this solution solves the problem of P1 constructing
the circuit incorrectly. However, it does not suffice. First, it creates new problems within itself.
Most outstandingly, once the parties now evaluate a number of circuits, some mechanism must
be employed to make sure that they use the same input when evaluating each circuit (otherwise,
as is shown below, an adversarial party could learn more information than allowed). Second, in
order to present a proof of security (based on commonly accepted proof method of simulation,
see [52]) there are additional requirements that are not dealt with by just employing cut-and-
choose (e.g., input extraction). Third, the basic folklore description of cut-and-choose is very
vague and there are a number of details that are crucial when implementing it. For example,
if P2 evaluates many circuits, then the protocol must specify what P2 should do if it does
not receive the same output in every circuit. If the protocol requires P2 to abort in this case
(because it detected cheating from P1), then this behavior actually yields a concrete attack in
which P1 can always learn a specified bit of P2’s input. It can be shown that P2 must take the
majority output and proceed, even if it knows that P1 has attempted to cheat. This is just one
example of a subtlety that must be dealt with. Another example relates to the fact that P1

may be able to construct a circuit that can be opened with two different sets of keys: the first
set opens the circuit correctly and the second incorrectly. In such a case, an adversarial P1 can
pass the basic cut-and-choose test by opening the circuits to be checked correctly. However, it
can also supply incorrect keys to the circuits to be computed and thus cause the output of the
honest party to be incorrect.

b
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4.1 The protocol of [81]

An initial cut-and-choose protocol based on Yao’s protocol was presented by Mohassel and
Franklin [92], but that protocol lacked a formal proof and was susceptible to a subtle attack
(as described in [81]). The first formally proven protocol in this approach was given in [81],
and later implemented in [83] (demonstrating a secure computation of the AES function). We
describe here the protocol of [81].

4.1.1 The structure of the protocol

There are a number of issues that must be dealt with when attempting to make Yao’s protocol
secure against malicious adversaries rather than just semi-honest ones. First, the protocol must
use an oblivious transfer subprotocol that is secure in the presence of malicious adversaries, as,
for example, the protocol of [105]. In addition, the main protocol must be changed.
First and foremost, a malicious circuit constructor P1 must be forced to construct the garbled
circuit correctly so that it indeed computes the desired function. According to the cut-and-
choose methodology, P1 constructs many independent copies of the garbled circuit and sends
them to P2. Party P2 then asks P1 to open half of them (chosen randomly). After P1 does
so, and party P2 checks that the opened circuits are correct, P2 is convinced that most of
the remaining (unopened) garbled circuits are also constructed correctly. (If there are many
incorrectly constructed circuits, then with high probability, one of those circuits will be in the set
that P2 asks to open.) The parties can then evaluate the remaining unopened garbled circuits
as in the original protocol for semi-honest adversaries, and take the majority output-value.

Why the protocol must output the majority output value. The reason for taking the
majority value as the output is that the aforementioned test only reveals a single incorrectly
constructed circuit with probability 1/2. Therefore, if P1 generates a single or constant number
of “bad” circuits, there is a reasonable chance that it will not be caught. In contrast, there
is only an exponentially small probability that the test reveals no corrupt circuit and at the
same time a majority of the circuits that are not checked are incorrect. Consequently, with
overwhelming probability it holds that if the test succeeds and P2 takes the majority result of
the remaining circuits, the result is correct. We remark that the alternative of aborting in case
not all the outputs are the same (namely, where cheating is detected) is not secure and actually
yields a concrete attack. The attack works as follows. Assume that P1 is corrupted and that
it constructs all of the circuits correctly except for one. The “incorrect circuit” is constructed
so that it computes the exclusive-or of the desired function f with the first bit of P2’s input.
Now, if P2 policy is to abort as soon as two outputs are not the same then P1 knows that P2

aborts if, and only if, the first bit of its input is 1.
The cut-and-choose technique described above indeed solves the problem of a malicious P1

constructing incorrect circuits. However, it also generates new problems. The primary problem
that arises is that since there are now many circuits being evaluated, we must make sure that
both P1 and P2 use the same inputs in each circuit; we call these consistency checks. Consistency
checks are important since if the parties were able to provide different inputs to different copies
of the circuit, then they can learn information that is different from the desired output of the
function. It is obvious that P2 can do so, since it observes the outputs of all circuits, but in fact
even P1, who only gets to see the majority output, can learn additional information: Suppose,
for example, that the protocol computes n invocations of a circuit computing the inner-product
between n bit inputs. A malicious P2 could provide the inputs 〈10 · · · 0〉, 〈010 · · · 0〉,. . . ,〈0 · · · 01〉,
b
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and learn all of P1’s input. If, on the other hand, P1 is malicious, it could also provide the
inputs 〈10 · · · 0〉, 〈010 · · · 0〉,. . . ,〈0 · · · 01〉. In this case, P2 sends it the value which is output by
the majority of the circuits, and which is equal to the majority value of P2’s input bits.
Another problem that arises with regards to the security proof is that in the proof the simulator
must be able to fool P2 and give it incorrect circuits (even though P2 runs a cut-and-choose
test). This is solved using rather standard techniques, like choosing the circuits to be opened
via a coin-tossing protocol (to our knowledge, this issue has gone unnoticed in all previous
applications of cut-and-choose to Yao’s protocol). Yet another problem is that P1 might provide
corrupt inputs to some of P2’s possible choices in the OT protocols. P1 might then learn P2’s
input based on whether or not P2 aborts the protocol.
We present a high-level overview of the protocol, and the consistency checks that it performs.
The full details of the protocol are in [81].
There are two security parameters. The parameter n is the security parameter for crypto-
graphic schemes (used for bit commitment, encryption, and the oblivious transfer protocol).
The parameter s is a statistical security parameter which specifies how many garbled circuits
are used. The difference between these parameters is due to the fact that the value of n de-
pends on computational assumptions, whereas the value of s reflects the error probability that
is incurred by the cut-and-choose technique and as such is a “statistical” security parameter.
Although it is possible to use a single parameter n, it may be possible to take s to be much
smaller than n. Typically one can set n = 128 and set s so that the cheating probability will
be around 2−40. Recall that for simplicity, and in order to reduce the number of parameters,
we denote the length of the input by n as well.

The protocol in detail

The protocol has the following structure. Parties P1 and P2 have respective inputs x and y, and
wish to compute the output f(x, y) for P2. The parties first decide on a circuit computing f .
They change the circuit by replacing each input wire of P2 by the exclusive-or of s new input
wires of P2. Consequently, the number of input wires of P2 increases by a factor of s. This is
depicted in Figure 4.1. (It was shown in [81] how to reduce the number of new inputs from ns
to O(max(n, s)).)
Next, P1 commits to s different garbled circuits computing f , where s is a statistical security
parameter. P1 also generates additional commitments to the garbled values (also referred to as
“keys”) corresponding to the input wires of the circuits. These commitments are constructed
in a special way, different for P1 and P2’s inputs, in order to enable consistency checks.
Then, for every input bit of P2, the parties run a 1-out-of-2 oblivious transfer protocol in which
P2 learns the garbled values of input wires corresponding to its input. P1 next sends to P2 all
the commitments it generated in the first step, and P1 and P2 run a coin-tossing protocol in
order to choose a random string that defines which commitments and which garbled circuits
will be opened. P1 opens the garbled circuits and committed input values that were chosen in
the previous step. P2 verifies the correctness of the opened circuits and runs consistency checks
based on the decommitted input values.
Finally, P1 sends to P2 the garbled values corresponding to P1’s input wires. P2 runs consistency
checks on these values as well, and assuming that all of the checks pass, P2 evaluates the
unopened circuits and takes the majority value as its output.
In more detail, the protocol operates in the following way:
Setup: Parties P1 and P2 have respective inputs x and y, and wish to compute the output
f(x, y) for P2.
Protocol:b
b
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0. The parties decide on a circuit computing f . They then change the circuit by replacing
each input wire of P2 by a gate whose input consists of s new input wires of P2 and
whose output is the exclusive-or of these wires (such an s-bit exclusive-or gate can be
implemented using s−1 two-bit exclusive-or gates). Consequently, the number of input
wires of P2 increases by a factor of s. This is depicted in Figure 4.1.

1. P1 commits to s different garbled circuits computing f , where s is a statistical security
parameter. P1 also generates additional commitments to the garbled values corresponding
to the input wires of the circuits. These commitments are constructed in a special way
in order to enable consistency checks.

2. For every input bit of P2, parties P1 and P2 run a 1-out-of-2 oblivious transfer protocol
in which P2 learns the garbled values of input wires corresponding to its input.

3. P1 sends to P2 all the commitments of Step 1.

4. P1 and P2 run a coin-tossing protocol in order to choose a random string that defines
which commitments and which garbled circuits will be opened.

5. P1 opens the garbled circuits and committed input values that were chosen in the previous
step. P2 verifies the correctness of the opened circuits and runs consistency checks based
on the decommitted input values.

6. P1 sends P2 the garbled values corresponding to P1’s input wires in the unopened circuits.
P2 runs consistency checks on these values as well.

7. Assuming that all of the checks pass, P2 evaluates the unopened circuits and takes the
majority value as its output.

Figure 4.1: Transforming one of P2’s input wires (Step 0 of the protocol).

Checks for Correctness and Consistency

P1 and P2 run a number of checks, with the aim of forcing a potentially malicious P1 to construct
the circuits correctly and use the same inputs in (most of) the evaluated circuits. This section
describes these checks.

Encoding P2’s input: As mentioned above, a malicious P1 may provide corrupt input to
one of P2’s possible inputs in an OT protocol. If P2 chooses to learn this input it will not be
able to decode the garbled tables which use this value, and it will therefore have to abort. If P2

chooses to learn the other input associated with this wire then it will not notice that the first
input is corrupt. P1 can therefore learn P2’s input based on whether or not P2 aborts. This
b
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attack is often referred to as the selective abort attack. (Note that checking that the circuit is
well-formed will not help in thwarting this attack, since the attack is based on changing P1’s
input to the OT protocol.) The attack is prevented by the parties replacing each input bit
of P2 with s new input bits whose exclusive-or is used instead of the original input (this step
was described as Step 0 of the protocol. P2 therefore has 2s−1 ways to encode a 0 input, and
2s−1 ways to encode a 1, and given its input it chooses an encoding with uniform probability.
The parties then execute the protocol with the new circuit, and P2 uses oblivious transfer to
learn the garbled values of its new inputs. As is shown in [81], if P1 supplies incorrect values as
garbled values that are associated with P2’s input, the probability of P2 detecting this cheating
is almost independent (up to a bias of 2−s+1) of P2’s actual input. This is not true if P2’s inputs
are not “split” in the way described above. The encoding presented here increases the number
of P2’s input bits and, respectively, the number of OTs, from n to ns. In [81] it is demonstrated
how to reduce the number of new inputs for P2 (and thus OTs) to a total of only O(max(s, n)).

An unsatisfactory method for proving consistency of P1’s input: Consider the follow-
ing idea for forcing P1 to provide the same input to all circuits. Let s be a security parameter
and assume that there are s garbled copies of the circuit. Then, P1 generates two ordered sets of
commitments for every wire of the circuit. Each set contains s commitments: the “0 set” con-
tains commitments to the garbled encodings of 0 for this wire in every circuit, and the “1 set”
contains commitments to the garbled encodings of 1 for this wire in every circuit. P2 receives
these commitments from P1 and then chooses a random subset of the circuits, which will be
defined as check-circuits. These circuits will never be evaluated and are used only for checking
correctness and consistency. Specifically, P2 asks P1 to de-garble all of the check-circuits and
to open the values that correspond to the check-circuits in both commitment sets. (That is,
if circuit i is a check-circuit, then P1 decommits to both the 0 encoding and 1 encoding of all
the input wires in circuit i.) Upon receiving the decommitments, P2 verifies that all opened
commitments from the “0 set” correspond to garbled values of 0, and that a similar property
holds for commitments from the “1 set”.
It now remains for P2 to evaluate the remaining circuits. In order to do this, P1 provides
(for each of its input wires) the garbled values that are associated with the wire in all of the
remaining circuits. Then, P1 must prove that all of these values come from the same set,
without revealing whether the set that they come from is the “0 set” or the “1 set” (otherwise,
P2 will know P1’s input). In this way, on the one hand, P2 does not learn the input of P1,
and on the other hand, it is guaranteed that all of the values come from the same set, and so
P1 is forced into using the same input in all circuits. This proof can be carried out using, for
example, the proofs of partial knowledge of [32]. However, this would require n proofs, each for
s values, thereby incurring O(ns) costly asymmetric operations which we want to avoid.

Proving consistency of P1’s input: P1 can prove consistency of its inputs without using
public-key operations. The proof is based on a cut-and-choose test for the consistency of the
commitment sets, which is combined with the cut-and-choose test for the correctness of the
circuits. (Note that in the previous proposal, there is only one cut-and-choose test, and it is for
the correctness of the circuits.) We start by providing a high level description of the proof of
consistency: The proof is based on P1 constructing, for each of its input wires, s pairs of sets
of commitments. One set in every pair contains commitments to the 0 values of this wire in all
circuits, and the other set is the same with respect to 1. The protocol chooses a random subset
of these pairs, and a random subset of the circuits, and checks that these sets provide consistent
inputs for these circuits. Then the protocol evaluates the remaining circuits, and asks P1 to
b
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open, in each of the remaining pairs, and only in one set in every pair, its garbled values for
all evaluated circuits. (In this way, P2 does not learn whether these garbled values correspond
to a 0 or to a 1.) In order for the committed sets and circuits to pass P2’s checks, there must
be large subsets C and S, of the circuits and commitment sets, respectively, such that every
choice of a circuit from C and a commitment set from S results in a circuit and garbled values
which compute the desired function f . P2 accepts the verification stage only if all the circuits
and sets it chooses to check are from C and S, respectively. This means that if P2 does not
abort then circuits which are not from C are likely to be a minority of the evaluated circuits,
and a similar argument holds for S. Therefore the majority result of the evaluation stage is
correct. The exact construction is as follows:

Stage 1 – Commitments: P1 generates s garbled versions of the circuit. Furthermore, it
generates commitments to the garbled values of the wires corresponding to P2’s input in each
circuit. These commitments are generated in ordered pairs so that the first item in a pair
corresponds to the 0 value and the second to the 1 value. The procedure regarding the input
bits of P1 is more complicated (see Figure 4.2 for a diagram explaining this construction). P1

generates s pairs of sets of committed values for each of its input wires. Specifically, for every
input wire i of P1, it generates s sets of the form {Wi,j,W

′
i,j}sj=1; we call these commitment

sets. Before describing the content of these sets, denote by kbi,r the garbled value that is
assigned to the value b ∈ {0, 1} in wire i of circuit r. Then, the sets Wi,j and W ′

i,j both
contain s + 1 commitments and are defined as follows. Let b ∈ {0, 1} be a random bit, chosen
independently for every {Wi,j,W

′
i,j} pair. Define Wi,j to contain a commitment to b, as well as

commitments to the garbled value corresponding to b in wire i in all of the s circuits, and define
W ′
i,j similarly, but with respect to 1−b. In other words, Wi,j = {com(b), com(kbi,1), . . . , com(kbi,s)}

and W ′
i,j = {com(1−b), com(k1−bi,1 , . . . , com(k1−bi,s )}. The fact that b is chosen randomly means

that with probability 1/2 the set Wi,j contains the commitments to values corresponding to 0,
and with probability 1/2 it contains the commitments to values corresponding to 1. We stress
that in each of the pairs (Wi,1,W

′
i,1), . . . , (Wi,s,W

′
i,s), the values that are committed to are the

same. The only difference is that independent randomness is used in each pair for choosing b
and constructing the commitments. We denote the first bit committed to in a commitment set
as the indicator bit.
After constructing these circuits and commitment sets, P1 sends to P2 all of the s garbled circuits
(i.e., the garbled gate-tables and output-tables, but not the garbled values corresponding to
the input wires), and all the commitment sets. Note that if P1’s input is of length n, then there
are sn pairs of commitment sets; and a total of sn(2s+ 2) = O(s2n) commitments.

Stage 2 – Challenge: Two random strings ρ, ρ′ ∈ {0, 1}s are chosen and sent to P1 (in the
actual protocol, these strings are determined via a simple coin-tossing protocol). The string
ρ is a challenge indicating which garbled circuits to open, and the string ρ′ is a challenge
indicating which commitment sets to open. We call the opened circuits check-circuits and the
unopened ones evaluation-circuits. Likewise, we call the opened sets check-sets and the unopened
ones evaluation-sets. A circuit (resp., commitment set) is defined to be a check-circuit (resp.,
check-set) if the corresponding bit in ρ (resp., ρ′) equals 1; otherwise, it is defined to be an
evaluation-circuit (resp., evaluation-set).

Stage 3 – Opening: First, P1 opens all the commitments corresponding to P2’s input wires
in all of the check-circuits. Second, in all of the check-sets P1 opens the commitments that
correspond to check-circuits. That is, if circuit r is a check circuit, then P1 decommits to all ofb
b
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Figure 4.2: The commitment sets corresponding to P1’s first input wire.

the values com(k0i,r), com(k1i,r) in check-sets, where i is any of P1’s input bits. Finally, for every
check-set, P1 opens the commitment to the indicator bit, the initial value in each of the sets
Wi,j,W

′
i,j. See Figure 4.3 for a diagram in which the values which are opened are highlighted

(the diagram refers to only one of P1’s input wires in the circuit).

Stage 4 – Verification: In this step, P2 verifies that all of the check-circuits were correctly
constructed. In addition, it verifies that, with regards to P1’s inputs, all the opened commit-
ments in sets whose first item is a commitment to 0 are to garbled encodings of 0; likewise for
1. These checks are carried out as follows. First, in all of the check-circuits, P2 receives the
decommitments to the garbled values corresponding to its own input, and by the order of the
commitments P2 knows which value corresponds to 0 and which value corresponds to 1. Second,
for every check-circuit, P2 receives decommitments to the garbled input values of P1 in all the
check-sets, along with a bit indicating whether these garbled values correspond to 0 or to 1. It
first checks that for every wire, the garbled values of 0 (resp., of 1) are all equal. Then, the
above decommitments enable the complete opening of the garbled circuits (i.e., the decryption
of all of the garbled tables). Once this has been carried out, it is possible to simply check that
the check-circuits are all correctly constructed. Namely, that they agree with a specific and
agreed-upon circuit computing f .

Stage 5 – Evaluation and Verification: P1 reveals the garbled values corresponding
to its input: If i is a wire that corresponds to a bit of P1’s input and r is an evaluation-circuit,
then P1 decommits to the commitments kbi,r in all of the evaluation-sets, where b is the value of
its input bit. This is depicted in Figure 4.4. Finally, P2 verifies that (1) for every input wire, all
the opened commitments that were opened in evaluation-sets contain the same garbled value,
and (2) for every i, j P1 opened commitments of evaluated circuits in exactly one of Wi,j or
W ′
i,j. If these checks pass, it continues to evaluate the circuit.

b
b
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Figure 4.3: In every check-set, the commitment to the indicator bit, and the commitments
corresponding to check-circuits are all opened.

Intuition. Having described the mechanism for checking consistency, we now provide some
intuition as to why it is correct. A simple cut-and-choose check verifies that most of the
evaluated circuits are correctly constructed. The main remaining issue is ensuring that P1’s
inputs to most circuits are consistent. If P1 wants to provide different inputs to a certain
wire in two circuits, then all the Wi,j (or W ′

i,j) sets it opens in evaluation-sets must contain
a commitment to 0 in the first circuit and a commitment to 1 in the other circuit. However,
if any of these sets is chosen to be checked, and the circuits are among the checked circuits,
then P2 aborts. This means that if P1 attempts to provide different inputs to two circuits and
they are checked, it is almost surely caught. Now, since P2 outputs the majority output of the
evaluated circuits, the result is affected by P1 providing different inputs only if these inputs
affect a constant fraction of the circuits. But since all of these circuits must not be checked,
P1’s probability of success is exponentially small in s.

Efficiency

The computation overhead is dominated by the oblivious transfers, as all other primitives are
implemented using symmetric key operations. Each input bit of P2 is replaced in the protocol
by s new input bits and therefore O(ns) OTs are required. In [81] it is shown how to use only
O(max(n, s)) new input bits, and consequently the number of OTs is reduced to O(max(n, s))
(namely O(1) OTs per input bit, assuming n = Ω(s)).
The communication overhead of the protocol is dominated by sending s copies of the garbled
circuit, and 2s(s+ 1) commitments for each of the n inputs of P1. In the protocol, the original
circuit C0 is modified by replacing each of the n original input bits of P2 with the exclusive-or of s
of the new input bits, and therefore the size of the evaluated circuit C is |C| = |C0|+O(ns) gates.
The communication overhead is therefore O(s|C|+s2n) = O(s(|C0|+ns)+s2n) = O(s|C0|+s2n)
times the length of the secret-keys (and ciphertexts) used to construct the garbled circuit.

b
b
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Figure 4.4: P1 opens in the evaluation-sets, the commitments that correspond to its input. In
every evaluation-set these commitments come from the same item in the pair.

4.2 Improved Efficiency Using Cut-and-Choose Oblivi-

ous Transfer

Although intuitively appealing, the cut-and-choose approach introduces a number of difficulties
which significantly affect the efficiency of the protocol of [81]. First, since the parties need to
evaluate s/2 circuits rather than one, there needs to be a mechanism to ensure that they use
the same input in all evaluations (the solution for this for P2’s inputs is easy, but for P1’s inputs
turned out to be hard). The mechanism used in [81] required constructing and sending s2`
commitments. In the implementation by [107], they set s = 160 (to have a cheating probability
of 2−s/4 = 2−40), and ` = 128. Thus, the overhead due to these consistency proofs is the
computation and transmission of 3, 276, 800 commitments. Another problem that the protocol
of [81] had to solve was that a malicious P1 could input an incorrect key into one of the oblivious
transfers used for P2 to obtain the keys associated with its input wires in the garbled circuit.
For example, it can set all the keys associated with 0 for P2’s first input bit to be garbage,
thereby making it impossible for P2 to decrypt any circuit if its first input bit indeed equals 0.
In contrast, P1 can make all of the other keys be correct. In this case, P1 is able to learn P2’s
first input bit, merely by whether P2 obtains an output or not. The important observation is
that the checks on the garbled circuit carried out by P2 do not detect this attack because there
is a separation between the cut-and-choose checks and the oblivious transfer. The solution to
this problem in [81] requires making the circuit larger and significantly increasing the size of the
inputs by replacing each input bit with the exclusive-or of multiple random input bits. Finally,
the analysis of [81] yields an error of 2−s/17. Thus, in order to obtain an error level of 2−40 the
parties need to exchange 680 circuits. We remark that it has been conjectured in [107] that the
true error level of the protocol is 2−s/4; however, this has not been proved.

b
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4.2.1 The new protocol

The new protocol, described in [82], solves the aforementioned problems, and reduces the error
probability to 2−0.311s (thus for an error of 2−40 it suffices to send only 128 circuits). The new
protocol moderately increases the number of exponentiations, while reducing the number of
circuits, completely removing the commitments, and also removing the need to increase the
size of the inputs. The price for these improvements is that the new protocol relies heavily
on the decisional Diffie-Hellman (DDH) assumption, while the protocol of [81] used general
assumptions only. We now proceed to describe the main techniques used by the new protocol:

• The solution for ensuring consistency of P1’s inputs is to have P1 determine the keys
associated with its own input bits via a Diffie-Hellman pseudorandom synthesizer [97].
That is, P1 chooses values ga

0
1 , ga

1
1 , . . . , ga

0
` , ga

1
` and gr1 , . . . , grs and then sets the keys

associated with its ith input bit in the jth circuit to be ga
0
i ·rj , ga

1
i ·rj . Given all of the

{ga0i , ga1i , grj} values and any subset of keys of P1’s input generated in this way, the
remaining keys associated with its input are pseudo-random by the DDH assumption.
Furthermore, it is possible for P1 to efficiently prove that it is using the same input in all
circuits when the keys have this nice structure.

• The reason that the inputs and circuits were needed to be made larger in [81] is due to the
fact that the cut-and-choose circuit checks were separated from the oblivious transfer. In
order to solve this problem, the protocol in [82] introduced a new primitive called cut-and-
choose oblivious transfer. This is an ordinary oblivious transfer with the sender inputting
many pairs (x01, x

1
1), . . . , (x

0
s, x

1
s), and the receiver inputting bits σ1, . . . , σs. However, the

receiver also inputs a set J ⊂ [s] of size exactly s/2. Then, the receiver obtains xσii for
every i (as in a regular oblivious transfer) along with both values (x0j , x

1
j) for every j ∈ J .

The use of this primitive in the new protocol intertwines the oblivious transfer and the
circuit checks and solves the aforementioned problem. It was also shown in [82] how to
implement this primitive in a highly efficient way, under the DDH assumption.

4.3 Improved Amortized Overhead

Protocols that use the cut-and-choose technique in a straightforward manner require approxi-
mately 3s garbled circuits to obtain a bound of 2−s on the cheating probability by the adver-
sary. Recently, Lindell [79] showed that by executing another light secure two-party protocol,
the number of garbled circuits can be reduced to s, which seems optimal given that 2−s is the
probability that a cut is bad and goes unnoticed by the circuit evaluator (meaning that all
the check circuits are good and all the unchecked circuits are bad). The number of garbled
circuits affects both computation time and communication. In most applications, when |C| is
large, sending s garbled circuits becomes the dominant overhead. (For example, [63] showed
a prototype for garbling a circuit on GPUs, which generates more than 30 million gates per
second. The communication size of this number of gates is about 15GB, and transferring 15GB
of data most likely takes much more than a second.) Thus, further reducing the number of
circuits is an important goal.
New results by [84] and concurrently by [61] reduce the number of circuits in cut-and-choose
in the multiple-execution setting, where a pair of parties runs many executions of the protocol.
This enables the parties to amortize the cost of the check-circuits over many executions.

b
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Amortizing checks over multiple executions. In a single execution, P1 constructs s
circuits and asks P2 to open a random subset of these circuits. If P1 makes some of these
circuits incorrect and some correct, then it can always succeed in cheating if P2 opens all of the
good circuits and the remaining are all bad. Since this bad event can happen with probability
2−s, this approach to cut-and-choose seems to have a limitation of s circuits for 2−s error.
However, consider now the case that the parties wish to run N executions. One possibility is
to simply prepare Ns circuits and work as in the single execution case. Alternatively, P1 can
prepare cN circuits (for some constant c); then P2 can ask to open a subset of the circuits;
finally, P2 randomly assigns the remaining circuits to N small buckets of size B (where one
bucket is used for every execution). The protocol suggested in [84], which is based on [79], has
the property that P1 can cheat only if there is a bucket in which all of the circuits are bad.
The probability of this happening when not too many bad circuits are constructed by P1 is
very small, but if P1 does construct many bad circuits then it will be caught even if a relatively
small subset of circuits is checked. This idea is very powerful. Asymptotically only O(s/ logN)
circuits are needed on average per execution. The work in [84] contains a detailed analysis of
the precise overhead of this scheme.

b
b
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Chapter 5

Protocols with Preprocessing

The goal of this chapter is to give a coherent introduction and overview of some recent protocols
in the so called preprocessing model (also known as the trusted dealer or commodity based
model). We will focus on protocols that are secure in the dishonest majority setting, against
active adversaries, and we are only going to consider static corruptions. We stress that due to
space constraints, many important details (including proofs of security) are missing, and we
refer the reader to the original papers for a more detailed exposition.
In the preprocessing model we assume that, before the protocol starts, the parties have access
to some correlated randomness. That is, before the protocol starts a joint sample from some
distribution (r1, . . . , rn)← Dπ is taken and the sample ri is given to party Pi. While each party
only receives its own random string from this sample, these random strings are correlated as
specified by the joint distribution. Note that the distribution is parametrized by the protocol,
in the sense that the different protocols described in this chapter require the trusted dealer to
sample from different distributions.
From a theoretical point of view, the correlated randomness model is interesting because it can
be used to circumvent impossibility results for the plain model such as the impossibility of secure
computation with unconditional security for dishonest majority. While constructing protocols
with unconditional security might not be a very important goal in itself since a complete
protocol will likely need some cryptographic assumptions anyway, even if just to realize private
and authenticated point-to-point channels or to generate pseudo-randomness, there is another
reason to be interested in protocols with unconditional security, namely efficiency : protocols
relying on cryptographic assumptions are usually less efficient because they require to perform
cryptographic operations which are orders of magnitude slower (especially when using public
key cryptography) than the kind of operations that the protocols presented in this chapter will
perform (field operations, XORs).

Instantiating the Trusted Dealer: In most practical applications we do not want to rely
on a single, trusted dealer. In practice, the trusted dealer model can be instantiated in several
different ways, including:

• MPC with preprocessing. It is often the case that parties can use idle times before
they have any input to run a secure “offline protocol” for generating and storing corre-
lated randomness. The correlated randomness is later consumed by an “online protocol”
which is executed once the inputs become available. This paradigm for MPC (i.e., for
secure multi-party protocols) is particularly useful when it is important that the outputs
are known shortly after the inputs are (i.e., for low-latency computation). Think of an
electronic election or an auction: all the involved parties know well in advance that ab

b
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certain computation will take place at some point in the future. Therefore the parties can
run a (more expensive) cryptographic protocol and then, when the inputs are known, run
a more efficient protocol. We sometimes call the preprocessing phase the offline phase,
while we call the part of the protocol described in this chapter the online phase. In the
Chapter 6 several protocols for the offline phase will be presented.

• Commodity-based MPC. In the setting of commodity-based cryptography [14], the
parties can “purchase” correlated randomness from one or more external servers. Security
in this model is guaranteed as long as at most t of the servers are corrupted, for some
specified threshold t, where corrupted servers may potentially collude with the parties. In
contrast to the obvious solutions of employing a server as a trusted party or running an
MPC protocol among the servers, the servers are only used during an offline phase before
the inputs are known, and do not need to be aware of the existence of each other.

• Honest-majority MPC. Recent large-scale practical applications of MPC [24, 22] em-
ployed three servers and assumed that at most one of these servers is corrupted by a
semi-honest adversary. Protocols in the correlated randomness model can be translated
into protocols in this 3-server model by simply letting one server generate the correlated
randomness for the other two.

5.1 Warm-up: One Time Truth Table

To start, we will present a very simple protocol for MPC in the preprocessing model which will
allow us to describe some of the issues that we will encounter later as well. The protocol is known
as one-time truth table (OTTT) and was presented in [65]. The OTTT protocol is optimal in
terms of communication complexity between the parties, but the size of the preprocessing is
exponential in the input size, and can therefore only be used for functions with small domains.
Still, it shows the power of the trusted dealer model and due to its simplicity can be explained
very easily to an inexperienced audience (for instance an undergrad class).
Let f be a function that takes n inputs from some domain Zm (for some integer m) and outputs
a single element in Zm. We will represent f with a truth table T ∈ (Zm)m

n
.

The offline phase: The trusted dealer chooses some random shifts s1, . . . , sn ∈ Zm and com-
putes a permuted truth table PT ∈ (Zm)m

n
s.t.1

PT [i1 + s1, . . . , in + sn] = T [i1, . . . , in]

Then the trusted dealer chooses random hypermatrices M2, . . . ,Mn ∈ (Zm)m
n

and defines

M1 = PT −
n∑
i=2

Mi

Finally the trusted dealer outputs (si,Mi) to each party Pi.

The online phase: Each party Pi has an input xi ∈ Zm. The protocol proceeds as follows:

1. Each party Pi sends ui = xi + si to all other parties.

2. Each party sends zi = Mi[u1, . . . , un] to all other parties.

1All additions + in the description of the protocol are modulo m.b
b
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3. All parties output z =
∑n

i=1 zi.

The protocol is correct (by inspection) and can be easily shown to be secure against passive
corruptions : the values ui can be seen as one-time pad encryptions of the inputs using the
random keys provided by the trusted dealer, and the shares of the output are uniformly random
values under the constraint that they sum up to the right output (and can therefore be easily
simulated).
It is also easy to see that the protocol is not secure against active adversaries : a corrupted
party P ∗i can change its share of the output therefore leading to an incorrect output for all
honest parties.2

To fix this issue, we need a way of making sure that a corrupted party cannot lie about the
share she received from the trusted dealer. To fix this we let the trusted dealer compute MACs
(message authentication codes) on all the shares it give to the parties.

Message Authentication Code. A MAC scheme has three algorithms (Gen,Tag,Ver) where
Gen produces a MAC key k, which can be used to compute tags on messages as t = Tagk(x).
Finally the verification input Verk(t, x) outputs accept if t is a valid tag on x with key k or reject
otherwise. Security is defined as a game between a challenger C and an adversary A: C samples
a key k, then A is allowed q queries where he can get tags t1, . . . , tq on messages x1, . . . , xq of
his choice. Now the adversary outputs (t′, x′). We say that a MAC scheme is (q, ε)−secure if no
(polynomial time) adversary which is allowed q queries can output a pair (t′, x′) with x′ 6= xi
for all i such that t′ is a valid MAC on x′ with probability greater than ε.
We can now enhance the OTTT protocol in the following way: for each pair of parties Pi and
Pj, the trusted dealer samples random MAC keys, computes tags on all entries of Mi and finally
outputs the tags to Pi and the keys to Pj. Now the online phase is modified and then Pi is
asked to send an entry of Mi to Pj it will also send a tag along. In this way Pj can, using the
MAC key, verify that the value it received from Pi is the same that Pi received from the trusted
dealer (since it is unfeasible for Pi to forge a MAC).
The modified protocol is now secure against active adversaries, and offers the same security
level as the MAC scheme. Remember that when proving security against active adversaries
the simulator needs to “extract” the input of the corrupted parties. This can be simply done
since the simulator knows the value ri for all corrupted parties, and can therefore compute
x′i = ui − ri. Now the simulator inputs this value to the ideal functionality and receives the
right output z. Since the simulator is emulating the trusted dealer, the simulator knows all the
MAC keys and can easily adjust the shares (and MACs) of the honest parties to make sure they
sum up to z. At the same time, the adversary cannot lie about her share due to the security of
the MAC scheme.
While most MAC schemes require cryptographic assumptions, note that in this application we
use each MAC key only once, and it is therefore possible to use information theoretic one-time
MACs.

One-Time MAC. The simplest MAC scheme that we can use in the above construction is
probably the following:

k ← Gen(1κ): Sample k = (α, β)← (Zp)
2 for a prime p such that log2 p > κ.

2A corrupted party could also send different shares to different parties, thus leading to a situation where
different honest parties have different outputs. We will not consider this in the following, and we will assume
the presence of a broadcast channel between the parties.

b
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t← Tagk(x): Compute a tag t on a value x with key k as t = α · x+ β.

{>,⊥} ← Verk(t, x): Output accept if t′ = α · x+ β or reject otherwise.

It is clear that the MAC is one-time secure: an adversary that sees a pair (t, x) and manages
to produce a different pair (t′, x′) with x′ 6= x can be trivially used to compute the key (α, β)
(since p is prime) and this happens only with probability O(1/p).
In the same way, an adversary who sees the MACs on two values using the same key can trivially
compute the key and therefore compute the MAC on any other value of her choice.

5.2 The Arithmetic Black-Box

The protocol from the previous section can only be used for “small” functions, since the the
samples that each party receive from the trusted dealer are exponential in the input size.
Moreover, in the previous protocol the preprocessing phase must know which functions the
parties want to compute.
A different and often more convenient model of computation is what we will call the arithmetic
black-box (ABB) [39]: in this chapter we will describe protocols that allow the parties to simulate
the existence of a trusted box that allows the parties to perform various arithmetic operations
over some field Zp, with p prime. Traditional choices of p are p = 2 (and therefore we talk about
Boolean computation), or large p such that 1/p is negligible. Sometimes it is useful to choose
a p that is larger than any internal value in the computation, so that it is possible to emulate
integer computation inside the modulo p (and therefore “forget” about modular reduction).
The arithmetic black-box allows parties to perform the following commands:

Input: When all parties input (input, Pi, idx) and party Pi inputs (input, Pi, idx, x) the box
stores the pair (idx, x) (or aborts if that id was already present in memory).

Output: When all parties input (output, idx, Pi), the box finds the pair (idx, x) in memory
and outputs the value x to Pi.

Add: When all parties input (add, idx, idy, idz), if there are pairs (idx, x) and (idy, y) in mem-
ory and idz is an unused id, the box stores (idz, x+ y).

Multiply: When all parties input (mul, idx, idy, idz), if there are pairs (idx, x) and (idy, y) in
memory and idz is an unused id, the box stores (idz, x · y).

This is the most basic arithmetic black-box. One could enhance it with other commands, such
as generation of random values, multiplication by scalar or more, but since all these commands
can be realized efficiently using the basic-box we do not include them here.

5.2.1 Implementing the Arithmetic Black-Box With Passive Secu-
rity

We present here a simple protocol that implements the arithmetic black-box with passive se-
curity. This is very similar to the GMW protocol presented in Section 3.3. The protocol is
in the trusted dealer model, and the only information that the trusted dealer needs to know
about the way the arithmetic black-box is used is an upper bound on the number of inputs I
and multiplications M which will be performed.
The protocol works as follows:b
b
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Notation: To emulate the storage of values in the arithmetic black box, we will use additive
secret sharing between parties. That is, a value x ∈ Zp is stored by having all parties Pi
store random shares xi ∈ Zp under the condition that

∑
i xi = x. We write [x] (x in a

box ) to denote this situation.3

Note that it is possible to interpret a publicly known value a as a stored value by simply
letting P1 set her share a1 = a and all other parties Pj set their shares aj = 0.

The Offline Phase: The trusted dealer, with parameters I and M (I being the upper bound
on the number of input commands, M an upper bound on the number of multiplication
operations) provides the parties with two kind of correlated randomness.

Random Value: The trusted dealer, for all i ∈ {1, . . . , I}
1. Samples random ri ∈ Zp, and random (ri1, . . . , r

i
n) ∈ (Zp)

n under the condition
that

∑
j r

i
j = ri;

2. Output [ri] (that is, output to each party Pj her share rij of ri);

Random Multiplication: The trusted dealer, for all i ∈ {1, . . . ,M} generates three
random values [ai], [bi], [ci] as described above, with the extra requirement that ci =
ai · bi;

The Online Phase: The parties P1, . . . , Pn, after receiving their shares of random values and
random multiplications from the trusted dealer, emulate the commands of the arithmetic
black-box in the following way (note that the commands are presented in a different order
here, since some will depend on previously defined ones):

Output: If party Pi is supposed to learn a secret value [x], all other parties Pj with j 6= i
send their shares xj to Alice which outputs x =

∑
i xi We write x← OutputTo(Pi, [x])

for short. We write also x← OutputAll([x]) as a shortcut for the case where everyone
is supposed to learn the output;

Addition: If the parties hold two values [x] and [y] and want to compute a new repre-
sentation [z] such that z = x+ y, each party Pi sets her new share zi = xi + yi. It is
trivial to check that now

z =
∑

zi =
∑

(xi + yi) =
∑

xi +
∑

y = x+ y

In the same way, it is possible to compute [z] such that z = a · x + b · y + c for any
publicly known (a, b, c) by applying local transformation on the shares.

To stress that no communication is involved in performing this operations, we write

[z] = a[x] + b[y] + c

as a shortcut.

Input: 4 If a party Pi is supposed to give an input x to the arithmetic black-box, the
parties:

3Note that we are abusing of notation, since when we write x we sometimes refer to the name of the variable
(the l-value of x) while sometimes we refer to the value associated to x (the r-value of x). When notation is
unclear, we will use n(x) to refer to the name of x and v(x) for the value associated to x, and therefore to be
correct we would write [n(x)].

4The input phase as described here is an overkill if one wants passive security only, but since this section is
only a warm-up to the following sections describing actively secure solutions, we opted for this solution that is
going to work also for active security.b
b
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1. Find the first random sample [r`] which was not used yet;

2. Run r` ← OutputTo(Pi, [r
`]);

3. Pi computes d = x− r` and sends d to all other parties Pj;

4. All parties (locally) compute their shares of

[x] = [r`] + d

We write [x]← Input(Pi, x) for short.

Multiplication: If parties hold two values [x] and [y] and want to compute a new new
representation [z] such that z = x · y, the parties:

1. Find the first random multiplication [a`], [b`], [c`] which was not used yet;

2. Run d← OutputAll([x]− [a`]);

3. Run e← OutputAll([y]− [b`]);

4. All parties (locally) compute their shares of

[z] = e · [a`] + d · [b`] + [c`] + d · e

Analysis, Correctness: The protocol is correct by inspection. The most interesting part
is how multiplications gates are evaluated using a random, preprocessed multiplication. This
trick is due to Beaver [13] and correctness can be easily checked:

ea+ db+ c+ de = (ay − ab) + (bx− ab) + (ab) + (xy − ay − bx+ ab) = xy

Analysis, (Passive) Security: The protocol is secure against passive corruptions: the com-
mand OutputTo leaks exactly the information which is supposed to, since the shares received
by party Pi are uniformly random conditioned to the fact that they add up to the correct value
(and can therefore be easily simulated); the command Add clearly does not leak any informa-
tion since it does not involve any communication; in the last two commands, Input and Mul,
we exploit the fact that the values obtained by the trusted dealer are uniformly random in the
view of up to n − 1 corrupted parties, and therefore the distribution of the revealed values d
(in Input) and d, e (in Mul) is independent of the actual inputs and internal values stores in the
black box.

Analysis, (Active) Security: The protocol described in this section is not secure against
active adversaries. The reason for this is that during the OutputTo command (similarly to what
we have already seen in the one-time truth table protocol), a party can change its share xi (even
as a function of the shares of the other n− 1 parties) and can therefore fully control the output
of the computation.
To address this problem, we need to enhance the representation of shared value [x] with some
MACs such that:

1. Parties cannot lie about their shares during the output phase;

2. It is still possible to compute linear combinations of representations without any commu-
nication;

b
b
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In the next sections we will see a number of different MAC schemes that achieve both properties
and therefore lead to fully-secure implementations of the arithmetic black-box. Crucially, we
will only need to describe: 1) the semantic of the representation [x] 2) how to perform an
OutputTo command and finally 3) the semantic of the addition between shared values [x] + [y].
In particular, we will not have to modify how the Input and Mul command are implemented.
To do so, remember that in the case of active security we need to be able to extract one
parties input (this is not only an artefact of our security model, but is also ensuring concrete
security properties such as input independence): now, let’s say that a corrupted party Pi is
giving input to the ABB: the simulator (which in the proof emulates the trusted dealer as well,
and therefore knows all the values r`) can extract the input of a corrupted party simply by
computing x′ = d − r`. Now, the simulator can input this to the ABB and run the protocol
with Pi replacing all inputs of the honest parties (which are unknown to the simulator) with
uniformly random values. Finally when an OutputTo command needs to be simulated, the
simulator receives the value from the ABB and will adjust the shares of the simulated honest
parties to “hit” the right output. Here it is crucial that the corrupted party cannot lie about
its share during the OutputTo phase (due to the security of the MAC schemes which will be
presented later), while at the same time the simulator can do this (similarly to what was done
in the OTTT protocol) since the simulator is also emulating the trusted dealer and therefore
knows all the MAC keys.
This “informal proof” of security shows that in the next sections we only need to focus on
describing shared representations which support linear operations (without communication)
and where we have the guarantee that during the reconstruction of the secret a corrupted party
can only make the honest parties output the right value (or abort the protocol).

5.3 BeDOZA and TinyOT Online Phase

In this section we describe a protocol that generalizes the way secret values are shared in the
protocols known as BeDOZa [20] and TinyOT [99]. The first protocol, BeDOZa, implements
an ABB over a field Zp for a large prime p, while TinyOT implements a Boolean Arithmetic
Black-Box over Z2. Here we will abstract this difference away and describe both protocols at
once. To do so, we will use also a parameter k which must be such that p−k is negligible.
Therefore in BeDOZa k = 1 while in TinyOT k > 60.

Shared Value: In BeDOZa and TinyOT, to emulate the values in the arithmetic black box
we will enhance the representation of the passive secure protocol with some MACs. First,
for each pair of parties Pi, Pj, with i 6= j, party Pi owns a “global MAC key” αi,j ∈ (Zp)

k.
Then, for each shared value [x] party Pi owns

1. A random share xi ∈ Zp (under the condition that
∑
xi = x);

2. A “local MAC key” βxi,j ∈ (Zp)
k for each other party Pj, j 6= i;

3. A tag txi,j = xi · αj,i + βj,i (note that party Pi has a tag computed on its own share
xi using the key owned by the other party Pj);

Note that keys (both global and local) and tags are k dimensional vectors, and the product
in step 3 between xi and αj,i is a scalar product (that is, all entries in αj,i are multiplied
by xi).

Output: When a party Pi is supposed to learn a value [x]
b
b
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1. All other parties Pj, j 6= i send the pair (xj, t
x
i,j).

2. For all j 6= i, party Pi checks if txi,j = xi · αi,j + βxi,j and aborts if any check fails;

3. If all checks pass, Pi outputs x =
∑
xi.

Addition: If the parties hold two values [x] and [y] and want to compute a new representation
[z] such that z = x+ y each party Pi

1. Computes zi = xi + yi;

2. Computes tzi,j = txi,j + tyi,j for all j 6= i;

3. Computes βzi,j = βxi,j + βyi,j for all j 6= i;

Analysis: It is easy to see that it is possible to compute linear combinations of shares using
only local computation. In fact, for all i, j

tzi,j = txi,j + tyi,j = (xi · αj,i + βxj,i) + (yi · αj,i + βyj,i) = zi · αj,i + βzj,i

as it is supposed to be. The security of the OutputTo command follows from the fact that
the MAC scheme used is secure: note that the MAC scheme used here is almost the same as
the one-time MAC scheme introduced before, except that here the first component of the key
α is kept constant over different authentications. This is crucial to allow to perform linear
operations on the MACs, but it does not have any impact on security, since when the adversary
sees q tags there are still q + 1 unknown values in (Zp)

k (q local keys β and one global key α).

Lazy MAC Check: In the passive secure protocol each party sends, for each OutputTo
command, one element in Zp. In the protocol presented here each party sends in addition a tag
in (Zp)

k, thus increasing significantly the communication complexity.
A possible optimization is to perform a lazy MAC check : the rationale here is that an adversary
who lies about her share only creates a real problem at the stage where some values is actually
given as output to a party. In particular, no (temporary) damage is caused when a party lies
about her share during the OutputTo commands which happen as a part of the Input and Mul
operations.
Therefore a possible strategy is to modify the output command as follows:

(Lazy) Output: When an output command is run as a subroutine in Mul or Input

1. Party Pi receives xj from all Pj, j 6= i;

2. Party Pj updates hj,i = hj,i +H(txj,i);

3. Party Pi updates
hj,i = hj,i +H(xj · αi,j + βxi,j)

Where all hi,j are initially set to 0 and H is some hash function5; Note that the input
to the hash function is the MAC that an honest Pj would have sent.

4. Party Pi outputs x =
∑
xi;

(Real) Output: When an output command is run because Pi should learn some output of
the computation [x], perform step 1-3 from the lazy output procedure and then:

4. Every party Pj sends h′j,i to party Pi.

5. If for any j, h′j,i 6= hj,i party Pi aborts, otherwise Pi outputs x =
∑
xi.

5See discussion below.b
b
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Discussion: The intuition here is that both parties Pi and Pj keep a history hj,i of all the
MACs that Pj should have sent to Pi thus, instead of checking the MACs every time a gate is
evaluated, MACs (or hashes of MACs) are only checked before the actual output phase. Doing
so we reduce the total communication complexity from O((I +M +O) · k · logp) to O((I +M) ·
logp +O ·k ·logp), where (I,M,O) are the number of input, multiplication and output commands
respectively. On the negative side, the opening now requires the use of a hash function. The
hash function can be implemented in at least two ways, namely: Using a cryptographic hash
function (such as the SHA family) with the disadvantage that the online phase now requires
cryptographic operations (and computational assumptions) or using universal hashing, that
is simply performing a field multiplication with some random value. This does not require
cryptographic operations during the online phase, and can be implemented by having the parties
coin-flip some random seed for a PRG and use this to generate the stream of random (unbiased)
elements used for the hashing.

Efficiency: The BeDOZa and TinyOT MAC style have the advantage that they do not require
any cryptographic operations and achieve unconditional security. On the negative side, to store
the representation of a single value in Zp each party must store O(nk) elements in Zp. This
will be addressed in the next two sections.

5.4 SDPZ Online Phase

Here we present an abstraction of the online phase of the SPDZ protocol [40, 37], including
the recent multiparty version of the TinyOT protocol [77]. In the previous section, the storage
requirement of each party grows linearly with the number of parties n. This is due to the fact
that each party must have a key and a tag for each other party. In SPDZ instead of computing
MACs on the share held by the parties, MACs will be computed directly on the secret shared
values (which, at the end of the day, is the values we are interested in reconstructing without
errors). More in details:

Shared Value: Also in SPDZ we use additive secret sharing representation enhanced with
some MACs. First, each party Pi has a share αi ∈ (Zp)

k. These shares define a unique
global key α =

∑
αi.

For each shared value [x] party Pi owns

1. A random share xi ∈ Zp (under the condition that
∑
xi = x);

2. A share of a tag txi such that the sum of all shares tx =
∑
txi satisfies

tx = x · α

Once again, tags and keys are k-dimensional vectors (where k = 1 when p is big enough
so that 1/p is negligible).

OutputAll: In the SPDZ protocol the “basic” output function is one which gives output to
all parties.6 To open a value [x].

6If only one party Pi is supposed to learn an output [x], one can use the standard trick of letting Pi input a
random value r to the ABB and then let the ABB output [z] = [x] + [r] instead. This now introduces a chicken
and egg problem, since in our protocol description we used the command OutputTo as a crucial component for
implementing Input. In SPDZ this is solved by asking the trusted dealer to compute random values [ri,`], for
each input ` ∈ {1, . . . , Ii} of party Pi, where the trusted dealer also reveals the plaintext value ri,` to party Pi.
Now this can be used to implement a Input phase very similar to the one described above.b
b
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1. All parties Pi broadcast their shares xi and define x =
∑

i xi;

2. All parties Pi compute values vi = x · αi − ti;
3. All parties Pi perform a simultaneous exchange7 of the vi’s, and abort if

∑
i vi 6= 0;

Addition: If the parties hold two values [x] and [y] and want to compute a new representation
[z] such that z = x+ y each party Pi

1. Computes zi = xi + yi;

2. Computes tzi = txi + tyi ;

Discussion: The protocol is correct by inspection: the key observation here is that instead of
having MACs on shares (like in the previous protocol) here there is only one key and only one
tag, and each party holds a share of both. During the opening phase, also the MAC checking
procedure is shared in the sense that once the value x becomes public, every party can compute
a “share” of the decision of whether to accept or reject. Now, when the MAC check accepts,
the output is 0 and this leaks no information on the MAC key α. If the MAC check does not
accept, we abort the protocol and therefore even a leak of the value α does not compromise the
privacy of the inputs of the parties (since MACs are only used to check the correctness of the
output).
The second crucial aspect is that when the parties exchange the value vi we need to avoid the
obvious rushing attack, where a corrupted party Pj waits for all other parties to send their
values vi and then sets vj = −

∑
i 6=j vi, thus making the MAC check accept any (incorrect)

value x. To avoid this we need to make sure that the parties exchange their shares of their
results simultaneously, and this can be simply done letting all parties commit and open their
shares.
Note that by performing lazy MAC check as described above, each party only needs to perform
one single commitment per output value.

Efficiency: The SPDZ online phase outperforms the BeDOZa/TinyOT online phase in terms
of storage complexity, since each party only needs to store one element in (Zp)

k per shared
value in Zp, thus independent of the number of parties.

5.5 MiniMACs Online Phase

As we already discussed, in the online phase of BeDoZa/TinyOT each party has a storage
overhead of

O(n · ε−1 · log p)

where ε is the security parameter. This is problematic for large number of parties n and when
computing over small modulo p. The SPDZ representation presented in the previous section
takes care of the dependence on n, but there is still a significant overhead when computing with
small p. For instance this means that when p = 2 then one needs to store a vector of MACs of
size k = ε−1 for each bit in the computation.
In the MiniMACs protocol [41, 38], this problem is addressed by letting parties store vectors
of values (instead of single ones) together with joint MACs on the whole vector. This has the
advantage of taking the storage overehead down to constant, but introduces the drawback of

7See discussion below.
b
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having to perform SIMD8 computation on the vector of shared data. This is not a problem
when the application at hand requires to compute many copies of the same function on different
inputs at the same time.
The main idea is to take a vector

x ∈ (Zp)
k

encode it using some linear code with constant rate

E(x) ∈ (Zp)
k

and now compute a single MAC for each entry in the encoded vector. Now, if an adversary
wants to cheat and have the honest parties output x′ 6= x, he needs to forge as many MACs as
the hamming distance between E(x′) and E(x). By picking the right code we can make sure
that this only happens with negligible probability.

8Single instruction multiple data.b
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Chapter 6

Implementing the Offline Phase of
Protocols with Preprocessing

In this Chapter we describe the state-of-the art in implementing the preprocessing phase for
the MPC protocols discussed in the previous section. These can be divided, depending on the
underlying cryptographic technology, in those based on homomorphic encryption (BeDOZa [20]
and SPDZ [40]) and those based on oblivious transfer (TinyOT [99]).
The offline phase in SPDZ uses a single instance of a somewhat homomorphic encryption scheme,
with distributed key generation and decryption procedures to generate triples shared across all
parties simultaneously; BeDOZa uses an semi-homomorphic encryption scheme between every
pair of parties. Since these implementations are quite similar in spirit, and SPDZ outperforms
BeDOZa, we survey the details of the former and highlight the differences with BeDOZa.

6.1 SPDZ

Overview

SPDZ relies on a somewhat homomorphic encryption scheme given by algorithms (KeyGen, Enc,
Dec): in such a scheme ciphertexts can be homomorphically added, and a single homomorphic
multiplication can be performed. In addition, we require protocols for distributed key generation
and distributed decryption for this encryption scheme. Distributed key generation generates
a public key and additive shares of a secret key, so that each share reveals no information on
the underlying key. All parties can use the common public key to encrypt data, but to decrypt
they must jointly use the distributed decryption algorithm, DistDec. This allows players holding
all shares of the secret key to decrypt a ciphertext known by all the players. One of the main
sources of inefficiency in BeDOZa, the use of zero-knowledge proofs is eliminated at the expense
of introducing the distributed decryption procedure.
Throughout this section we will sometimes use bold letters to emphasize that we are dealing
with vectors, rather than with single elements in Zp. The SPDZ protocol uses the BGV scheme
[25], which has security based on the ring learning with errors assumption. The key advantage
of this scheme is that ciphertexts can contain a vector of many plaintext messages, such that ho-
momorphic addition and multiplication are applied component-wise on plaintext vectors. Thus,
the encryption (decryption) algorithm uses an extra encoding (decoding) function that takes el-
ements from the vector space Zsp to the ring over which the message space is effectively defined.
The necessary properties are that decodings of encode(m) returns m, and the ring product
encode(m1) · encode(m2) decodes to the component-wise product m1 ·m2 (which also applies
b
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for the sum of two encodings). This allows the cost of creating many random multiplicative
triples to be very efficient in an amortized sense.

Generating SPDZ Triples

Overview. Recall that we wish to generate triples [a], [b], [c] with a, b, randomly distributed
in Zp, and c = a · b. That is, each player Pi holds shares ai, bi, ci, of the triple, and shares
tai , t

b
i , t

b
i of their corresponding tags ta, tb, tc.

The idea is that Pi first generates their random shares ai,bi and computes encryptions of these.
All players broadcast their ciphertexts and sum them up using homomorphic addition to obtain
public ciphertexts ca = Enc(a), and cb = Enc(b), where a = a1+ · · ·+an, and b = b1+ · · ·+bn.
Now they can use homomorphic multiplication to calculate an encryption of the component-
wise product a · b and then use distributed decryption so that each party obtains a cleartext
share of this.
The main challenge is to do all this with active (or covert) security, so that an adversary who
does not follow the protocol cannot learn any additional information, with good probability.

EncCommit. A key subprotocol of SPDZ is EncCommit, which enables the use of ciphertexts
as commitments, binding players to their shares of a message, whilst still allowing commitments
to be manipulated with the homomorphic properties of the encryption scheme. The output
of EncCommit is a random message mi to each player Pi, seen as a share of the message
m = m1 + · · · + mn, and in addition every player gets the ciphertexts ci = Enc(mi) for i = 1
to n.
A passively secure protocol for EncCommit is straightforward: after distributed key generation
has been performed, each player simply encrypts a random message and sends the ciphertext to
all other players. The difficulty in implementing this protocol with active security is to ensure
that messages and ciphertexts are properly generated: if a player can generate their ciphertext
dishonestly, it is possible that a selective failure attack could be mounted, leaking information
on an honest party’s message share depending on whether decryption succeeds or not later on.

Reshare. As well as EncCommit and somewhat homomorphic encryption, there is one more
important building block required to be able to generate multiplication triples. We need a
protocol that allows parties to decrypt a ciphertext so that each party learns only a share of
the message (recall that distributed decryption gives the message to every party). This is fairly
straightforward to do with distributed decryption and EncCommit: each party uses EncCommit
to commit to another random share, fi, and they add the ciphertexts of these shares to the
ciphertext being decrypted, giving an encryption of m+f , where f = f1+ · · ·+fn. Now invoking
distributed decryption on this, parties can subtract their share fi to get a valid share of m.

Triple generation. The protocol for generating triples is given in Figure 6.2. It uses sub-
protocols EncCommit and Reshare in a fairly straightforward manner as described earlier. Note
that in step 2d, Reshare is used with the flag NewCiphertext, which causes it to output a fresh
encryption of the product a · b. This is required since the somewhat homomorphic encryption
scheme only supports one multiplication; we then need to multiply ca·b by cα to obtain the tag
on a · b, which would not be possible without a fresh encryption.

b
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Protocol Reshare

Usage Input: cm, where cm = Encpk(m) is a public ciphertext and a parameter enc, where
enc = NewCiphertext or enc = NoNewCiphertext.
Output: a share mi of m to each player Pi; if enc = NewCiphertext, a ciphertext c′m. The
idea is that cm could be a product of two ciphertexts, which Reshare converts to a “fresh”
ciphertext c′m. Since Reshare uses distributed decryption (that may return an incorrect
result), it is not guaranteed that cm and c′m contain the same value, but it is guaranteed
that

∑
imi is the value contained in c′m.

Reshare(cm, enc)

1. The players run FSHE on query EncCommit(Rp) so that Pi obtains plaintext fi and all
players obtain cfi , an encryption of fi.

2. The players compute cf ← cf1 + · · ·+ cfn , and cm+f ← cm + cf . Let f = f1 + · · ·+ fn
(notice that no party can compute f).

3. The players invoke DistDec to decrypt cm+f and thereby obtain m + f .

4. P1 sets m1 ←m + f − f1, and each player Pi (i 6= 1) sets mi ← −fi.
5. If enc = NewCiphertext, all players set c′m ← Encpk(m + f) − cf1 − · · · − cfn , where a

default value for the randomness is used when computing Encpk(m + f).

Figure 6.1: The protocol for sharing m ∈ Rp on input cm = Encpk(m).

Procedure TripleGen
This produces at least 2n [·]-shared values (aj , bj , cj) such that cj = aj · bj .

1. The players run EncCommit to obtain cα, an encryption of the global MAC key α, so that
party Pi knows some share αi of α.

2. For k ∈ {1, . . . , 2n}:

(a) The players run EncCommit twice so that Pi obtains plaintexts ai,bi and all players
obtain cai and cbi , encryptions of ai and bi.

(b) The players compute ca ← ca1 + · · · + can and cb ← cb1 + · · · + cbn . Define a =
a1 + · · ·+ an and b = b1 + · · ·+ bn, although no party can compute a or b.

(c) The players compute ca·b ← ca · cb.

(d) The players execute Reshare(ca·b,NewCiphertext) so that Pi obtains the share ci and
all players obtain a fresh ciphertext cc encrypting the plaintext c = c1 + · · ·+ cn.

(e) The players compute cγ(a) ← ca · cα, cγ(b) ← cb · cα and cγ(c) ← cc · cα.

(f) The players execute:
Reshare(cγ(a),NoNewCiphertext),
Reshare(cγ(b),NoNewCiphertext), and
Reshare(cγ(c),NoNewCiphertext)
to obtain shares γ(a)i, γ(b)i and γ(c)i.

Figure 6.2: Production of tuples and shared bits.

Sacrificing. The triples generated by the previous protocol may contain errors. This is
because the distributed decryption protocol, used in Reshare, allows an adversary to introduceb
b
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errors into the ciphertext. One solution to prevent this attacks is to use general techniques to
make the protocol immune to active attacks; this would however require the use of expensive
zero knowledge proofs. Instead, we use a sacrificing technique, whereby half of the triples are
wasted in order to check correctness of the other half. This method, outlined below, is also
used for BeDOZa and TinyOT, which have the same problem that triples could contain errors.
Take two triples ([a0], [b0], [c0]), ([a1], [b1], [c1]), and agree on a public random value u ∈ Zp using
a commitment scheme.

• Partially open v = u · [b0]− [b1] and w = [a0] + [a1].

• Locally compute

x = u · [c0] + [c1]− [a0] · v − [b1] · w
= [u · (c0 − a0 · b0) + c1 − a1 · b1]

and check it partially opens to 0.

• Check the tags on the partially opened values, as explained in the OutputAll command of
Chapter 5.

• Output ([a0], [b0], [c0]) as a valid multiplication triple.

If b0, b1, u are random elements of Zp then so are the opened values v and w, provided one of the
triples is then discarded. If othe output triple is not multiplicative, then c0−a0 · b0 is invertible
in Zp, and the only challenge value for which the check succeeds is u = (c1−a1 ·b1)/(c0−a0 ·b0),
so this happens with probability 1/p. In fields where p−1 is negligible in the security parameter
this already gives statistical security. For small fields, security can be increased by simply
checking the triple several times, sacrificing more triples: to get security 2k we need to sacrifice
roughly k/ log p triples. Alternatively, a more efficient procedure for small fields is given for the
multi-party version of TinyOT [77], which performs cut-and-choose and randomly assigns the
triples into buckets before sacrificing (similarly to the actively secure EncCommit protocol that
is described below).

EncCommit: covert security

To implement EncCommit with covert security, a simple cut-and-choose based protocol can be
used. Each player generates c message and ciphertext pairs and broadcasts the ciphertexts,
along with a commitment to the random seeds used to generate the ciphertexts. The players
jointly choose one set of ciphertexts to use as the output at random, and then open the com-
mitments to the remaining c− 1 sets of ciphertexts and check they are well-formed. Clearly a
cheating player can only cheat in one of the c ciphertexts, so will only succeed with probability
1/c. If c is chosen large enough (e.g. 10 or 20) and there is a suitable penalty for cheating to
act as a deterrent then this can give an acceptable level of security for many scenarios.

EncCommit: active security

In some cases, we may require that a player can only cheat with negligible probability in a
security parameter, for instance 2−40. Clearly this is infeasible to achieve with the simple cut-
and-choose approach above. For active security there are two possible approaches: one from [40]
using a zero knowledge proof of plaintext knowledge and another cut-and-choose based method
from [37]. Below we sketch the cut-and-choose method:b
b
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Let Pi be the player producing ciphertexts to be verified by the other players. The protocol is
parametrized by two natural numbers T, b where b divides T . We set t = T/b. The protocol
produces as output t ciphertexts c0, . . . , ct−1.
Each such ciphertext is generated according to the algorithm described earlier, and is therefore
created from the public key and four polynomials m, v, e0 and e1. To make the notation easier
to deal with below, we rename these as f1, f2, f3, f4. We can then observe that there exist ρl,
for l = 1, . . . , 4 such that |fl|∞ ≤ ρl except with negligible probability. Concretely, we can use
ρ1 = p/2, ρ2 = 1 and ρ3 = ρ4 = ρ where ρ can be determined by a tail-bound on the Gaussian
distribution used for generating f3, f4.
Each player Pi also creates a set of random reference ciphertexts δ0, . . . , δ2T−1 that are used to
verify that c0, . . . , ct−1 are well-formed and that Pi knows what they contain. Each δj is created
from 4 polynomials g1, . . . , g4 in the same way as above, but the polynomials are created with
a different distribution. Namely, they are random subject to |gi|∞ ≤ 4 · δ · ρi · T · φ(m), where
δ > 1 is some constant.
The protocol proceeds as follows:

1. Pi is given some number of attempts to prove that his ciphertexts are correctly formed.
The protocol is parametrized by a number M which is the maximal number of allowed
attempts. We start by setting a counter v = 1.

2. Pi broadcasts the ciphertexts c0, . . . , ct−1 and the ciphertexts δ0, . . . , δ2T−1, These cipher-
texts should be generated from seeds s0, . . . , s2T−1 that are first sent through the random
oracle whose output is used to generate the plaintext and randomness for the encryptions.

3. A random index subset of size T is chosen, and Pi must broadcast si for i ∈ T . Players
check that each opened si indeed induces the ciphertext δi, and abort if this is not the
case.

4. A random permutation π on T items is generated and the unopened ciphertexts are per-
muted according to π. We renumber the permuted ciphertexts and call them δ0, . . . , δT−1.

5. Now, for each ci, the subset of ciphertexts {δbi+j| j = 0, . . . , b− 1} is used to demonstrate
that ci is correctly formed. This is called the block of ciphertexts assigned to ci. We do
as follows:

(a) For each i, j do the following: let f1, . . . , f4 and g1, . . . , g4 be the polynomials used
to form ci, respectively δbi+j. Define zl = fl + gl, for l = 1, . . . , 4.

(b) Player Pi checks that |zl|∞ ≤ 4 · δ · ρl ·T ·φ(m)− ρl. If this is the case, he broadcasts
zl, for l = 1, . . . , 4. Otherwise he broadcasts ⊥.

(c) In the former case players check that |zl|∞ is in range for l = 1, . . . , 4 and that the
zl’s induce the ciphertext ci + δbi+j.

(d) At the end, players verify that for each ci, Pi has correctly opened ci + δbi+j for all
ciphertexts in the block assigned to ci.

(e) If all checks go through, output c0, . . . , ct−1 and exit. Else, if v < M , increment v
and go to step 2. Finally, if v = M , the prover has failed to convince us M times,
so abort the protocol.

It is possible to adapt the protocol for proving that the plaintexts in ci satisfy certain special
properties. For instance, assume we want to ensure that the plaintext polynomial f1 is ab
b
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constant polynomial, i.e., only the degree-0 coefficient is non-zero. We do this by generating
the reference ciphertexts such that for each δi, the polynomial g1 is also a constant polynomial.
When opening we check that the plaintext polynomial is always constant. The proof of security
is trivially adapted for this case.
Some intuition for why this works: after half the reference ciphertexts are opened, we know
that except with exponentially small probability, almost all the unopened ciphertexts are well
formed. A simulator will be able to extract randomness and plaintext for all the well formed
ones. When we split the unopened δj’s randomly in blocks of b ciphertexts, it is therefore very
unlikely that some block contains only bad ciphertexts. It can be shown that the probability
that this happens is at most t1−b · (e · ln(2))−b [100].
Assume Pi is corrupt: now, if he survives one iteration of the test, and no block was completely
bad, it follows that for every ci, he has opened opened at least one ci + δbi+j where δbi+j was
well formed. The simulator can therefore extract a way to open ci since ci = (ci + δbi+j)− δbi+j.
It will be able to compute polynomials fl for ci with |fl|∞ ≤ 8 · δ · ρl · T · φ(m). Therefore, if
some ci is not of this form, the prover can survive one iteration of the test with probability at
most t1−b · (e · ln(2))−b. To survive the entire protocol, the prover needs to win in at least one
of the M iterations, and this happens with probability at most M · t1−b · (e · ln(2))−b, by the
union bound.
Assume Pi is honest: then when he decides whether to open a given ciphertext, the probability
that a single coefficient is in range is 1

4·δ·φ(m)·T . There are 4 · φ(m) coefficients in a single
ciphertext and up to T ciphertexts to open, so by a union bound, Pi will not need to send ⊥
at all, except with probability 1/δ. The probability that an honest prover fails to complete the
protocol is hence (1/δ)M . We therefore see that the completeness error vanishes exponentially
with increasing M , and in the soundness probability, we only lose logM bits of security.
It is easy to see that for each opening done by an honest prover, the polynomials zl will
have coefficients that are uniformly distributed in the expected range, so the protocol can be
simulated.
Finally, note that in a normal run of the protocol, only one iteration is required, except with
probability 1/δ. So in practice, what counts for the efficiency is the time we spend on one
iteration.

6.2 BeDOZa

Overview. The preprocessing stage of BeDOZa uses a semi-homomorphic encryption scheme.
This is a relaxed notion of additively homomorphic encryption (AHE), where ciphertexts can
be added together to compute an encryption of the sum of messages. In semi-homomorphic en-
cryption, it suffices that homomorphic addition can be performed, and decryption will succeed
provided the underlying message does not grow too large. While SPDZ uses homomorphic mul-
tiplication and distributed decryption to obtain a multiplication triple shared across all parties,
in BeDOZa we only rely on additive homomorphism so we must perform the multiplication in
a pairwise fashion.
To do this, first all pairs of parties generate a public/private key pair for the semi-homomorphic
encryption scheme. Now two parties Pi and Pj can generate random shares xi, xj, and compute
their product as follows: Pi encrypts xi under Pi’s public key and sends Enci(xi) to Pj. Now Pj
generates a random value rj and uses additive homomorphism to calculate c = xj · Enci(xi) +
Enci(rj) and sends c to Pi. Pi outputs the decryption of c and Pj outputs −rj, which add up
to the product xi · xj.
b
b
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To bootstrap pairwise multiplication to multiplication of a value shared across n parties, we
simply run the pairwise protocol between every pair of parties, where each party uses the same
random share for every instance.
Once shares of a triple have been generated, the parties then run a similar protocol to add
MACs to these shares. Since a MAC is simply the product of one party’s share and another
party’s global key, added to a local MAC key, the same pairwise protocol for multiplication can
be applied to achieve authentication: one party inputs their share and the other party inputs
their global MAC key.

Zero knowledge proofs. The protocol sketched above is only passively secure, since there
is no way to ensure that the parties generate valid ciphertexts. To turn this into a protocol
with active security, we need two zero knowledge proofs for the semi-homomorphic encryption
scheme. These are a proof of plaintext knowledge, ΠPoPK, to prove that parties correctly
encrypt ciphertexts and know the underlying plaintext, and a proof of correct multiplication,
ΠPoCM, which ensures that the second party correctly multiplies in their share using additive
homomorphism. In BeDOZa the zero knowledge proof ΠPoPK has amortized complexity O(κ+u)
bits per instance proved, where the soundness error is 2−u, whilst ΠPoCM has complexity O(κu).
For the particular case of Paillier encryption, there is a more efficient version of ΠPoCM with
complexity just O(κ+ u).

Comparison with SPDZ. In BeDOZa, the main cost of the protocol is the zero knowledge
proofs for active security. In particular, ΠPoCM, the proof of correct multiplication, is very
expensive. This is avoided in SPDZ by using just one instance of a somewhat homomorphic
encryption scheme: since all parties perform the multiplication on public ciphertexts there is
no need to prove correctness. However, SPDZ has additional overheads due to distributed key
generation and distributed decryption. Key generation only needs to be performed once and
distributed decryption is quite efficient (since it doesn’t need to guarantee correct outputs) but
both of these procedures cause the parameters of the BGV scheme to grow. Unfortunately, this
increases the cost of all basic operations on ciphertexts, as well as communication. Implemen-
tations of SPDZ suggest that producing triples is more efficient than BeDOZa, and also has the
benefit of the more efficient online phase. However, in the BeDOZa paper, it is conjectured that
a modified form of the semi-homomorphic encryption schemes satisfy an additional property
called multiplication security. If this is the case, the ΠPoCM protocol is not needed and the
resulting protocol could be much more efficient, but this has not been proven.

6.3 TinyOT

Overview. The preprocessing of TinyOT uses oblivious transfer (OT) instead of building
on homomorphic encryption. We start explaining how OT is used to generate tags on bits.
Next, since OT is a 2-party primitive, these tags can be obtained in a pairwise fashion, so we
need a method to bootstrap to global tags. Finally, we explain how to produce the correlated
randomness.

Generating Pair-wise Tags

In order to distinguish pair of parties we will write [r]ij,αj to mean that Pi holds a bit r and
element µi ∈ Zp, and Pj holds two field elements νj and αj, such that µi = νj + r · αj. This is
captured in the ideal FaBit functionality of Figure 6.3, that produced large batches (of size `)b
b
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of authenticated bits. To implement it we proceed in two steps. (1) First, Pi and Pj execute
a protocol to generate a large number of authenticated bits under a larger global key α̃j. This
protocol is insecure in the sense that a dishonest Pi might learn some bits of the larger key. We
can think of it as a leaky implementation of FaBit. (2) Privacy amplification is used to give Pj
a smaller but fully secure (pairwise) key αj.

The Functionality FaBit

Honest Parties

On input (aBit, i, j) from honest Pi and Pj , the functionality samples a random αj ∈ F and
does the following

- For each s ≤ ` it samples random bit rs and random field element νsj . It then sets
µsi = νsj + rs · αj .

- It outputs {rs, µsi}s≤` to Pi and (αj , {νsj }s≤`) to Pj . Thus, both parties hold represen-

tations {[rs]iαj ,j}s≤`

Corrupted Parties

- If Pi is corrupted, the functionality waits for the environment to input pairs {rs, µsi}s≤`,
and it sets νsj = µsi+r

s ·αj . Then (αj , {νsj }s≤`) is returned to party Pj (with αj sampled
as above).

- If Pj is corrupted, the functionality waits for the environment to input the pair
(αj , {νsj }s≤`), and it sets µsi = νsj + rs · αj . The pairs {rs, µsi}s≤` are returned to
party Pi (with {rs}s≤` sampled as above).

Figure 6.3: Ideal Two-party Bit Authentication [99]

The leaky protocol in detail. The main idea of the protocol, described in Figure 6.4, ex-
ploits techniques of OT extensions: The two parties run many OTs with Pi playing the sender
and Pj playing the receiver. In the kth OT Pi inputs large vectors (xk0,x

k
1), and Pj inputs the

kth bit of αj, i.e. inputs αj[k] = ak. An honest Pi sets his input vectors so that they define
an additive sharing of a random vector r formed with the bits that he wishes to authenticate.
Namely, he sets xk0 ⊕ xk1 = r, where r[k] is the kth authenticated bit. To test that Pi used
the same vector r in every OT the parties randomly partition the OTs into pairs. Say that
one such pair consists of the kth and sth OT. Pj then sends b = ak ⊕ as to Pi and computes
d = xkak ⊕ xsas . If Pi is honest he can also compute d as d = xk0 ⊕ xs0 ⊕ e · r. On the other
hand, it is not difficult to see that if Pi used different values for r in the kth and sth OT he can
guess d with at most probability 1

2
. Therefore, to test that Pi behaved honestly, they compare

their own values of d by securely exchanging the hashes of d and check they are equal. This is
modeled with an standard FEQ functionality. In case of inequality the protocol is aborted since
this will indicate that one party is corrupted. As Pj reveals ak ⊕ as, the parties waste the sth
OT and only use the output of the kth OT as output from the protocol—since as is uniformly
random ak ⊕ as leaks no information on as. Note that we cannot simply let Pi reveal d, as a
malicious Pj could send b = 1 ⊕ ak ⊕ as: this would allow Pj to learn both d and d ⊕ r, thus
b
b
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leaking r. Using FEQ forces a malicious Pj to make the protocol abort unless he can guess a
random message, which he can do only with negligible probability 2−`.

Protocol πLaBit

1. Pi samples r ∈R {0, 1}` and for k = 1, . . . , 2τ samples xk0 ∈R {0, 1}`.
2. Pj samples (a1, . . . , a2τ ) ∈R {0, 1}2τ .
3. The parties run a FOT(2τ, `) functionality, where for k = 1, . . . , 2τ Pi inputs messages xk0

and xk0 ⊕ r. Pj inputs choice bit ak and receives xkak = xk0 ⊕ ak · r.
4. Pj picks a uniformly random pairing π (a permutation π : [2τ ]→ [2τ ] where ∀k, π(π(k)) =

k), and sends π to Pi. Given a pairing π, let Sπ = {k|k ≤ π(k)}, i.e., for each pair, add the
smallest index to Sπ.

5. For all τ indices k ∈ Sπ:
(a) Pj announces bk = ak ⊕ aπ(k).
(b) Pj computes dk = xkai ⊕ xsas and Pi computes d̂k = xk0 ⊕ xs0 ⊕ bk · r.

The parties then compare the strings (dk)k∈Sπ and (d̂k)k∈Sπ using FEQ(τ`) and abort if
they are different. Otherwise the protocol continues.

6. Pi outputs (r, (xk0)k∈Sπ) and Pj outputs (xkak , ak)k∈Sπ .

Figure 6.4: Leaky Pairwise Authentication From Oblivious Transfer

Removing the leakage. In Figure 6.5 we describe a protocol where one quarter of the bits
of the global key might leak, and amplify it to the FaBit functionality. It takes πLaBit as a
subprocedure.

1. The parties invoke πLaBit with global keys of length τ = 22
3 ψ. The output to Pi is

(µ̂i,k, rk)k∈[`]. The output to Pj is (α̂j , (ν̂j,k)k∈[`]).

2. Pj samples A ∈R {0, 1}ψ×τ , a random binary matrix with ψ rows and τ columns, and sends
A to Pi.

3. Pi computes ui,k = Aûi,k ∈ {0, 1}ψ, (where ûi,k are the bits of µ̂i,k, and µi,k is formed with
bits ui,k) and outputs (µi,k, rk)k∈[`].

4. Pj computes aj = Aâj and vj,k = Av̂j,k (where âj are the bits of α̂j , v̂i,k are the bits of
ν̂i,k) and outputs (αj , (νj,k)i∈[`]).

Figure 6.5: Reducing FaBit to Amplified πLaBit

Correctness of the protocol is straight forward: We have that

µ̂i,k = ν̂j,k ⊕ ri · α̂j ,

so
µi,k = Aµ̂i,k = Aνj,k ⊕ rkAα̂k = νj,k ⊕ ri · αj.

In addition it is clear that the protocol leaks no information on the ri’s to Pj: there is only
communication from Pj to Pi. It is therefore sufficient to look at the case where Pi is corrupted.
To prove security against corrupted Pi it is enough to see that αj is uniformly random in theb
b

PRACTICE D11.1 Page 52 of 85



D11.1 - A Theoretical Evaluation of the Existing Secure Computation Solutions

view of Pi except with probability 22−ψ. In [99] it was shown that there exists a failure event
F such that: (1) F occurs with probability at most 22−ψ. (2) When F does not occur, then αj
is uniform to Pi.

Exploiting the Output of FaBit

We now change perspective and do not see FaBit as a mean to obtain pairwise authentications.
Instead we will use it to produce additive sharings of the scalar product x · δ, where one party
chooses the scalar x, but the field element δ is unknown and additively shared among all the
parties. This will serve for two purposes: to authenticate bits towards all the parties, and to
generate the triples needed for the multiplication gate.
In other words, for a given bit x we want to obtain a representation of the form [x]iδ =
{〈x〉i, 〈µ〉i, 〈ν〉P , 〈δ〉P}. Here 〈·〉I stands for an additive secret sharing reconstructable by the
parties indexed in subset I ⊆ P . For example when we write 〈x〉I we mean that for each i ∈ I
party Pi holds a bit xi, or share, such that

∑
i∈I xi = x. If we drop the set of indices from [·]

we mean that the values are shared among the entire system of parties.
The idea behind the protocol of Figure 6.6 is as follows: Each pair of parties is given access to
the FaBit functionality and use its output to form the new representation [·]. In more detail, if
Pi wants to authenticate a bit xi towards the entire set of parties he proceeds in three steps.
First, he generates a representation [rj]

i
αj

= {〈rj〉i, 〈µ̂i〉i, 〈ν̂j〉j, 〈α̂j〉j} on a random bit rj with
each other party Pj using FaBit. Second, Pj switches to a share αj of his chosing — as Pj needs
to use the same share with the remaining parties. Pj does this sending σi = α̂j + αj to Pi who
sets µi = µ̂i + xi · σi. Third, Pi sends dj = ri + xi to Pj, who can use it to obtain a valid share
of the MAC on xi. Namely, Pj sets νj = ν̂j + dj · αj. After completing the same steps with all
the parties, Pi adds up xi · αi to all his shares µi. In this way the system has obtained [xi]

i
δ.

Generating tags towards all the parties. To generate global authentications [x], the
parties use the protocol ΠBootstrap (Figure Figure 6.6) to obtain [x]iα which are tuples of the
form{〈x〉i, 〈µ〉i, 〈ν〉P , 〈α〉P}, such that µ = ν + x · α. Then, for j 6= i, party Pj sets his share of
x to be zero, and txj = νj. Party Pi sets txi = µ+ νi. Thus, the parties obtain [x].

Generating multiplicative triples. First we see how to generate a variant of the triples,
i.e. bit quadruples ([e], [z], [x0], [x1]) such that z = xe. Later the quadruple is converted to a
multiplicative triple.
Observe that tags and OTs are closely related: OTs can be seen as evaluation of affine functions,
which is essentially what tags are. Seeing both as the same object means that a way to
authenticate bits also gives us a way to generate OTs, and the other way around.
To produce bit quadruples (e, z, x0, x1), such that z = xe, the parties will use a (secret) affine
line in F parametrized by (ϑ, η). Note that ΠBootstrap gives [ei]

i
η, where ei is known to Pi,

and an additive sharing 〈η〉 is held by the system. Since fresh copies of ΠBootstrap are used to
generate OT quadruples and for tags’ generation, to emphasize which η is used in each concrete
execution we write ΠBootstrap(η). Note, that η is not an input to the functionality but a shared
random value produced when calling Initialise. Now, performing n independent queries of Share
command on this copy ΠBootstrap(η), the parties can generate

[e]Pη = [e1]
1
η + · · ·+ [en]nη . (6.1)

b
b
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The Protocol ΠBootstrap

Initialize: Each party Pi samples a random αi. Define α = α1 + · · ·+ αn.

Share:

The parties do the following:

1. For each j 6= i, run the steps below. After completion, party Pi obtains {ri,j , µi,j}j 6=i
whilst party Pj obtains νi,j , such that µi,j = νi,j + ri,j · αj .

(a) Pi and Pj call FaBit on input (aBit, i, j): The box samples a random α̂j and then
produces

[r]iα̂j ,j = (r, µ̂i, νj),

such that µ̂i = νj + r · α̂j , and outputs {r, µ̂i} to Pi and {α̂j , νj} to Pj .

(b) Pj computes σi = αj + α̂j and sends σi to party Pi.

(c) Pi sets µi = µ̂i + r · σi = νj + r · αj .

2. Party Pi samples ε at random and sets µi = ε+
∑

j 6=i µi,j and νi = ε+ x · αi.
3. Party Pi sends dj = x+ ri,j to party Pj for all j 6= i.

4. For j 6= i, Pj sets νj = νi,j + dj · αj .
5. Output (µi, νi, αi) to Pi and (νj , αj) to party Pj , for j 6= i. The system now has [x]iα.

Figure 6.6: Transforming Two-party Representations into [·]iα-representations

Thus, the system obtains two (secret) elements 〈e〉, 〈ζ〉, such that ζ = ϑ+e·η, for line (〈ϑ〉, 〈η〉).
Define χ0 = ϑ and χ1 = ϑ+ η, so it holds ζ = χe. The quadruple (e, z, x0, x1) is then given by
the least significant bits of the corresponding field elements (e, ζ, χ0, χ1).
To add tags to each bit of the quadruple that the parties just generated, the protocol uses the
ΠBootstrap(α) instance to obtain a sharing 〈α〉 of the global key. Each party can now authenticate
his shares of (e, z, x0, x1) querying Share command and obtaining [e], [z], [x0], [x1]. We emphasize
that the same α is used to authenticate all OT quadruples, thus ΠBootstrap(α) is fixed once and
for all.
The parties now have sharings [e], [z], [x0], [x1], which could suffer from two possible errors
induced by the corrupted parties: Firstly the multiplicative relation z = xe may not hold, and
second the tags values may be inconsistent. For the latter problem we will check all the partially
opened values as explained in Chapter 5 at the end of the offline phase. For the former case
we sacrifice some quadruples to check another, as explained in Section 6.1. Finally, the triple
is derived simply setting [a] = [x0] + [x1], [b] = [e], [c] = [x0] + [z].

b
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Chapter 7

Specific Protocols for Private Set
Intersection

Private set intersection (PSI) allows two parties P1 and P2 holding sets X and Y , respectively,
to identify the intersection X ∩ Y without revealing any information about elements that are
not in the intersection. The basic PSI functionality can be used in applications where two
parties want to perform JOIN operations over database tables that they must keep private,
e.g., private lists of preferences, properties, or personal records of clients or patients.
PSI is used for privacy-preserving computation of functionalities such as relationship path dis-
covery in social networks [88], botnet detection [93], testing of fully-sequenced human genomes [7],
proximity testing [98], or cheater detection in online games [27]. Another use case is measure-
ment of the performance of web ad campaigns, by comparing purchases by users who were
shown a specific ad to purchases of users who were not shown the ad. This is essentially a
variant of PSI where the input of the web advertising party is the identities of the users who
were shown the ad, and the input of the merchant, or of an agency that operates on its behalf,
is the identities of the buyers.
PSI has been a very active research field, and there have been many suggestions for PSI pro-
tocols. The large number of protocols makes it non-trivial to perform comprehensive cross-
evaluations. This is further complicated by the fact that many protocol designs have not been
implemented and evaluated, were analyzed under different assumptions and observations, and
were often optimized w.r.t. overall runtime while neglecting other relevant factors such as
communication.
In this chapter, we give an overview on existing efficient PSI protocols that are based on public-
key cryptography (cf. Section 7.2), generic secure computation (cf. Section 7.3), and oblivious
transfer (cf. Section 7.4). We compare both the empirical performance of all protocols on the
same platform and conclude with remarks on the protocols and their suitability for different
scenarios (cf. Section 7.5). This chapter is a summary of the work presented in [108].

7.1 Notation and Security Definitions

We denote the parties as P1 and P2, and their respective input sets as X and Y with |X| = n1

and |Y | = n2. When the two input sets are of equal size, we use n = n1 = n2. We refer
to elements from X as x and elements from Y as y and each element has bit-length σ. We
write b[i] for the i-th element of a list b, denote the bitwise-AND between two bit strings a
and b of equal length as a∧ b and the bitwise-XOR as a⊕ b. We write

(
N
1

)
-OTm

` for m parallel

1-out-of-N oblivious transfers on `-bit strings, and write OTm
` for

(
2
1

)
-OTm

` . In this chapter, Enc
b
b

PRACTICE D11.1 Page 55 of 85



D11.1 - A Theoretical Evaluation of the Existing Secure Computation Solutions

Security SYM (κ) FFC and IFC (ρ) ECC (ϕ) Hash
128-bit 128 3 072 K-283 SHA-256

Table 7.1: NIST recommended key sizes for symmetric cryptography (SYM), finite field cryp-
tography (FFC), integer factorization cryptography (IFC), elliptic curve cryptography (ECC)
and hash functions.

denotes the encryption operation and the operation in an encrypted domain and Dec denotes
the decryption operation.

Security parameters We denote the symmetric security parameter as κ, the asymmetric
security parameter as ρ, the statistical security parameter as λ, and use the recommended key
sizes of the NIST guideline [101], summarized in Tab. 7.1. We denote the bit size of elliptic
curve points with ϕ, i.e., ϕ = 284 for the NIST recommended Koblitz curve K-283 using point
compression.

7.2 Public-Key-Based PSI

In the following section we describe efficient PSI protocols based on public-key cryptography.
We describe a very simple Diffie-Hellman-based PSI protocol (Section 7.2.1) and a RSA-based
PSI protocol (Section 7.2.2). An advantage of these protocols is that they are relatively easy
to implement, but they achieve only moderate performance since they require at least a linear
number of relatively expensive public-key operations.

7.2.1 Diffie-Hellman-Based PSI

Probably the first PSI protocol was given in [62] (a similar construction was described in [86]).
The protocol is secure based on the Decisional Diffie-Hellmann (DDH) assumption (a security
proof appeared in [2]). The protocol works in the following way: Both parties agree on a cyclic
group of prime order q and on a hash function H that is modeled as a random oracle. P1

chooses a secret α ∈R Zq and P2 chooses β ∈R Zq. P1 then computes (H(x1))
α, ..., (H(xn1))

α,
permutes the order of the results and sends them to P2. In parallel to that operation, P2

computes (H(y1))
β, ..., (H(yn2))

β, permutes the order of the results and sends them to P1.
P1 then raises each of the values that it received to the power of α and sends the results to P2,
while P2 raises each of the values that it received to the power of β. P2 then compares the values
that it computed to those received from P1. Note that the associativity of the exponentiation
operation guarantees that if x = y then ((H(x))α)β = ((H(x))β)α and this enables P2 to
identify the intersection. (This last comparison does not require any crypto operations and can
be implemented efficiently using a hash table.)
Overall, P1 and P2 have to send n1 + n2 and n2 group elements, respectively, and compute
n1 + n2 exponentiations each. A major advantage of this protocol, apart from its simplicity, is
that the two parties execute similar computations and can therefore work in parallel and in full
utilization of their computing power. In addition, the exponentiation can be implemented using
elliptic-curve cryptography, improving computation and, even more notably, communication
overhead.

b
b

PRACTICE D11.1 Page 56 of 85



D11.1 - A Theoretical Evaluation of the Existing Secure Computation Solutions

7.2.2 RSA-Based PSI

A protocol for private set intersection which uses a blinded RSA approach was introduced
(among other protocols) in [34]. A detailed description of an efficient implementation of this
protocol appeared in [35]. In the protocol, P1 chooses an RSA key pair 〈pk, sk〉 = 〈(N, e), d〉 and
computes x′i = H(Decsk(xi)) for each element xi in its input set, whereH is a cryptographic hash
function modeled as a random oracle. P1 sends pk to P2 and P2 chooses a random element ri
for each yi, blinds yi as µi = yi · Encpk(ri) mod N , and sends the values µi to P1.
P1 then decrypts the blinded values µi of P2 as µ′i = Decsk(µi) and sends µ′i and the hash values
x′i back to P2. Finally, P2 de-blinds and hashes µ′i by computing y′i = H(µ′i/ri mod N), which
it then can compare with the received x′i values to identify intersecting elements.
In terms of communication, P2 sends to P1 n2 ciphertexts, i.e., its blinded values, and P1 sends
n1 + n2 ciphertexts, i.e., its own hashed elements and P2’s signed and blinded values. The
computation complexity is n2 RSA encryptions for P2 and n1 + n2 RSA decryptions for P1, of
which the n2 decryptions of its own values can be computed before receiving the first message
from P2.
Observe that in this protocol one party (P2) has to perform n2 relatively light-weight RSA
encryptions, whereas the other party (P1) has to perform n1 + n2 computationally intensive
RSA decryptions. This asymmetry makes it hard to improve performance by running the tasks
of the two parties in parallel, as is possible with the DH-based solution. In addition, this
protocol cannot be based on elliptic-curve cryptography.

7.3 Circuit-Based PSI

Unlike special purpose private set intersection protocols, the protocols that we describe in
this section are based on a generic secure computation protocol that can be used for com-
puting arbitrary functionalities. State-of-the-art for computing the PSI functionality is the
sort-compare-shuffle (SCS) circuit of [59], which has size O(n log n). The SCS circuit can be
evaluated using secure computation protocols such as GMW (cf. Section 3.3) or Yao’s garbled
circuits (cf. Section 3.2).
The usage of generic protocols holds the advantage that the functionality of the protocol can
easily be extended, without having to change the protocol or the security of the resulting
protocol. For example, it is straightforward to change the protocol to compute the size of the
intersection, or a function that outputs 1 iff the intersection is greater than some threshold,
or compute a summation of values (e.g., revenues) associated with the items that are in the
intersection. Computing these variants using other PSI protocols is non-trivial.

7.3.1 Sort-Compare-Shuffle Circuit for PSI

The straightforward way of using a circuit for PSI is to compare each input item of P1 to each
input of P2. However, this approach results in a circuit of size O(n2). A more efficient approach
is the sort-compare-shuffle (SCS) circuit described in [59] that has a size of O(n log n). (We
refer here to the SCS circuit that uses the Waksman permutation for shuffling). The SCS
circuit computes the intersection between two sets by first sorting both sets into a single sorted
list, then comparing all neighboring elements for equality, and finally shuffling the intersecting
elements in order to hide any information that could be obtained from the resulting order.
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Sort To sort both sets into a single sorted list, both parties locally pre-sort their sets and
merge them using a bitonic merging circuit [8]. In contrast to a sorting network, a bitonic
merging circuit takes advantage of the fact that the inputs are already sorted and allows the
parties to obtain a globally sorted list of 2n input elements using n log2(2n) sorter circuits. A
sorter circuit takes as input two elements x and y, swapping them if x > y and preserving the
order if x ≤ y. Each sort gate consists of a comparison and a conditional swap sub-circuit.

Compare All elements in the sorted list are then compared to their neighbors to determine
if a duplicate exists. Since each party’s input consists of different values, duplicates only occur
for items in the intersection of the two inputs. A duplicate item is passed on, whereas if no
duplicate is found then the item is replaced by a special bottom symbol.

Shuffle Finally, all elements are shuffled using a Waksman permutation network [122]. An n
input Waksman circuit consists of n log2(n)−n+1 conditional swap gates, which either forward
their two input elements or swap their order depending on the required randomly chosen output
permutation.

Overall The overall size of the SCS circuit for input words of length σ is σ(3n log2 n+4n)−n
gates, which is the sum of 2σn log2(2n) AND gates for the sort circuit, σ(3n − 1) − n AND
gates for the compare circuit, and σ(n log2(n)− n+ 1) for the shuffle circuit, where n = n1+n2

2
.

It is important to note that approximately 2/3 of the AND gates in the circuit are due to
multiplexers.

7.3.2 Optimized Circuit-Based PSI

We describe in this section an optimization which greatly reduces the overhead of circuit based
PSI for GMW (as is detailed in Fig. 7.1 in Section 7.5, the reduction in the runtime for inputs
of size 218 is about 40%). The optimization is based on a protocol proposed in [91].
As outlined in Section 7.3.1, the size of the SCS circuit is dominated by the multiplexer gates.
In each multiplexer operation with σ-bit inputs x and y and a choice bit s, we compute z[j] =
s ∧ (x[j] ⊕ y[j]) ⊕ x[j] for each 1 ≤ j ≤ σ using σ AND gates in total. The evaluation of this
multiplexer circuit in the GMW protocol requires random OT2σ

1 , namely 2σ random OTs of
single-bit inputs. We observe that the same wire s is input to multiple AND gates which allows
for the following optimization.
Consider an input wire u that is the input to multiple AND gates of the form w[1] = (u ∧
v[1]), . . . , w[σ] = (u ∧ v[σ]). Similar to the evaluation of a single AND gate described in Sec-
tion 3.3, these gates can be evaluated using a multiplication triple (cf. Section 3.3) generalized
to vectors, which we call a vector multiplication triple.
A vector multiplication triple has the following form: a1, a2 ∈ {0, 1}; b1, b2, c1, c2 ∈ {0, 1}σ,
where Pi holds the shares labeled with i that satisfy the condition (a1 ⊕ a2) ∧ (b1[j]⊕ b2[j]) =
c1[j]⊕c2[j]. To evaluate the AND gates, both parties compute di = ai⊕ui and ei[j] = bi[j]⊕vi[j],
exchange di, ei[j], set d = d1⊕ d2, e[j] = e1[j]⊕ e2[j], and wi[j] = (d∧ e[j])⊕ (d∧ bi[j])⊕ (e[j]∧
ai)⊕ ci[j].
The vector multiplication triple can be pre-computed analogously to the regular multiplication
triples described in Section 3.3, but using random OT2

σ, namely only two random OTs applied
to σ-bit strings: The parties each choose a1, a2 ∈R {0, 1} and perform a random OT1

σ with P1

acting as sender and P2 acting as receiver with choice bit a2, and a second random OT1
σ with

P2 acting as sender and P1 acting as receiver with choice bit a1. From these random OTs, Pib
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obtains bi ∈ {0, 1}σ = xi0 ⊕ xi1 and, analogously to the regular multiplication triple generation,
a valid ci ∈ {0, 1}σ.

7.4 OT-Based PSI

The recent PSI protocol of [44] uses Bloom Filters (BF) and OT to compute set intersection.
We summarize Bloom filters in Section 7.4.1 and the PSI protocol of [44] in Section 7.4.2. We
then present a redesigned optimized version of the protocol in Section 7.4.3. This optimization
reduces the runtime for inputs of size 218 by 55%− 60% (cf. Section 7.5, Fig. 7.1).

7.4.1 The Bloom Filter

A BF that represents a set of n elements consists of an m-bit string F and k independent
uniform hash functions h1, ..., hk with hi : {0, 1}∗ 7→ [1,m], for 1 ≤ i ≤ k. Initially, all bits
in F are set to zero. An element x is inserted into the BF by setting F [hi(x)] = 1 for all i.
To query if the BF contains an item y, one checks all bits F [hi(y)]. If there is at least one j
such that BF [hj(y)] = 0, then y is not in the BF. If, on the other hand, all bits BF [hi(y)]
are set to one, then y is in the BF except for a false positive probability ε. An upper bound

on ε can be computed as ε = pk(1 + O(k
p

√
lnm−k ln p

m
)), where p = 1 − (1 − 1

m
)kn. The authors

of [44] propose to choose the number of hash functions as k = 1/ε and the size of the BF as
m = kn/ ln 2 ≈ 1.44kn. In their experiments, they set ε = 2−κ, resulting in k = κ and a filter
of size m ≈ 1.44κn.

7.4.2 Garbled Bloom Filter-Based PSI

For BF-based PSI, one cannot simply compute the bitwise AND of the BFs that represent
each set, as this leaks information (see [44] for details). Instead, the authors of [44] introduced
a variant of the BF, called Garbled Bloom Filter (GBF). Like a BF, a GBF G uses κ hash
functions h1, ..., hκ, but instead of single bits, it holds shares of length ` at each position G[i],
for 1 ≤ i ≤ m. These shares are chosen uniformly at random, subject to the constraint that for
every element x contained in the filter G it holds that

⊕κ
j=1G[hj(x)] = x.

To represent a set X using a GBF G, all positions of G are initially marked as unoccupied.
Each element x ∈ X is then inserted as follows. First, the insertion algorithm tries to find a
hash function t ∈ [1...κ] such that G[ht(x)] is unoccupied (the probability of not finding such a
function is equal to the probability of a false positive in the BF, which is negligible due to the
choice of parameters). All other unoccupied positions G[hj(x)] are set to random `-bit shares.

Finally, G[ht(x)] is set to G[ht(x)] = x⊕
(⊕κ

j=1,j 6=tG[hj(x)]
)

to obtain a valid sharing of x. We

emphasize that because existing shares need to be re-used, the generation of the GBF cannot
be fully parallelized. (We describe below in Section 7.4.3 how the protocol can be modified to
enable a parallel execution.)
In the semi-honest secure PSI protocol of [44], P1 generates a m-bit GBF GX from its set X
and P2 generates a m-bit BF FY from its set Y . P1 and P2 then perform OTm

` , where for the
i-th OT P1 acts as a sender with input (0, GX [i]) and P2 acts as a receiver with choice bit
FY [i]. Thereby, P2 obtains an intersection GBF G(X∧Y ), for which G(X∧Y )[i] = 0 if FY [i] = 0
and G(X∧Y )[i] = GX [i] if FY [i] = 1. P2 can check whether an element y is in the intersection

by checking whether
⊕k

i=1G(X∧Y )[hi(y)]
?
= y. (Note that P2 cannot perform this check for

any value which is not in its input set, since the probability that it learns all GBF locationsb
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associated with that value is equal to the probability of a false positive, which is negligible due
to the choice of parameters.) The bit-length of the shares in the GBF can be set to ` = λ.

7.4.3 Random GBF-Based PSI

We introduce an optimization of the GBF-based PSI protocol of [44], which we call the random
Garbled Bloom Filter protocol. The core idea is to have parties collaboratively generate a
random GBF. This is in contrast to the original protocol where the GBF had to be of a specific
structure (i.e., have the XOR of the entries of x ∈ X be x). The modified protocol can be based
on random OT extension (in fact, on a version of the protocol which is even more efficient than
the original random OT extension). For each position in the filter, each party learns a random
value if the corresponding bit in its BF is 1. P1 then sends to P2 the XOR of the GBF values
corresponding to each of its inputs, and P2 compares these values to the XOR of the GBF
values of its own inputs.
We denote the primitive that enables this solution an oblivious pseudo-random generator
(OPRG), which takes as inputs bits b1, b2 from each party, respectively, generates a random
string s, and outputs to Pt s if bt = 1 and nothing otherwise, for t ∈ {0, 1}. Additionally, we
require that the parties remain oblivious to whether the other party obtained s. A protocol
for computing this functionality is obtained by modifying the existing random OT extension
protocol of [3] as follows.
Random OT extension is a special flavor of OT extension where, in the i-th OT, S has no input
and outputs two random values (xi0, x

i
1), while R inputs a choice bit vector b and outputs xib[i]

(cf. Section 3.1). The new functionality is obtained by having S ignore the xi0 output that it
receives, and ignore also the xi1 output if b1 = 0. Similarly, R ignores its output if b2 = 0. The
random OT extension protocol thus becomes more efficient, since the parties can ignore parts
of the computation.
Our resulting Bloom filter-based protocol works as follows. First, P1 and P2 each generate a
BF, FX and FY respectively. They evaluate the OPRG with P1 being the sender and P2 being
the receiver, using the bits of FX and FY as inputs, to obtain random GBFs GX and GY with
entries in {0, 1}`. For each element xj in its set X, P1 then computes mP1 [j] =

⊕κ
i=1GX [hi(xj)],

with 1 ≤ j ≤ n1. Finally, P1 sends all mP1 values in random order to P2, which identifies
whether an element y in its set is in the intersection by checking whether a j exists such that
mP1 [j] =

⊕κ
i=1GY [hi(y)].

7.4.4 Private Set-Inclusion and Hashing

We outline a very recent private set intersection protocol ([108]) that is based on the most
efficient OT extension techniques, in particular the random OT functionality [99, 3] and the
efficient 1-out-of-N OT of [73]. This PSI protocol scales very efficiently with an increasing set
size.
We first describe the protocol for a private equality test (PEQT) between two elements x and
y and then describe how to efficiently extend it for comparing y to a set X = {x1, ..., xn}.
The resulting protocol can then be simply extended to perform PSI between sets X and Y by
applying the parallel comparison protocol for each element y ∈ Y . Finally, the overhead of the
protocol can be greatly improved using hashing as described in [108].
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The Basic PEQT Protocol

In the most basic private equality test (PEQT) protocol, P1 and P2 check whether their σ-bit
elements x and y are equal by engaging in random

(
2
1

)
OTσ

` , where P2 uses the bits of y as its
choice vector. From each random OT, P1 obtains two uniformly distributed and random `-bit
strings (si0, s

i
1), and P2 obtains siy[i]. P1 then computes mP1 =

⊕σ
i=1 s

i
x[i] (the XOR of the strings

corresponding to the binary representation of x) and sends it to P2. P2 compares this value to
mP2 =

⊕σ
i=1 s

i
y[i] and decides that x = y if and only if mP1 = mP2 .

The basic private equality test can be improved by using a base-N representation of the inputs
and a

(
N
1

)
OT in the protocol. Specifically, let N = 2η. P1 and P2 check whether their σ-bit

elements x and y are equal by representing them using t = σ/η letters from an alphabet of size
N , and then engaging in random

(
N
1

)
-OTt

`.
For this, P2 cuts its σ-bit element y into t blocks y[i] of bitlength η each: y = y[1]|| . . . ||y[t];
similarly, P1 interprets x = x[1]|| . . . ||x[t]. In the i-th random

(
N
1

)
-OT, P2 inputs y[i] as choice

bits and P1 obtains N random and uniformly distributed `-bit strings (si0, ..., s
i
N−1); P2 obtains

siy[i]. P1 sends mP1 =
⊕t

i=1 s
i
x[i] to P2 who compares it to mP2 =

⊕t
i=1 s

i
y[i] and decides that

x = y iff mP1 = mP2 .

Private Set Inclusion Protocol

In a private set inclusion protocol, P1 and P2 check whether y equals any of the values in
X = {x1, ..., xn1}. The set inclusion protocol is similar to the basic PEQT protocol, but in
order to perform multiple comparisons in parallel, the OTs are computed over longer strings,
essentially transferring (in parallel) a random string for each element in the set X.
In more detail, both parties run a random

(
N
1

)
-OTt

n1`
, where P2 uses the bits of y as choice

bits. Each received string is of length n1` bits. That is, in the i-th random OT, P1 obtains N
random strings (si0, ..., s

i
N−1) ∈ {0, 1}n1`, and P2 obtains one random string siy[i]. The strings

are parsed as a list of n1 sub-strings of length ` bits each. We refer to the j-th sub-string in
these lists as siw[j], for 1 ≤ j ≤ n1 and 0 ≤ w < N . Using these sub-strings, P1 and P2 can then
compute the XOR of the strings corresponding to their respective inputs, compare the results
and decide on equality, as was described in the basic PEQT protocol above. In more detail, P1

computes mP1 [j] =
⊕t

i=1 s
i
xj [i]

[j] and sends the n1`-bit string mP1 to P2. P2 decides whether y

matches any of the elements in X by computing mP2 =
⊕t

i=1 s
i
y[i] and checking whether there

exists an index j with mP1 [j] = mP2 .
Note that we now require that the value mP2 and all the n1 values mP1 [j] are distinct, which
happens with probability n12

−`. Thus, to achieve correctness with probability 1-2−λ, we must
increase the bit-length of the OTs to ` = λ + log2 n1. Also, note that P2 learns the position j
at which the match is found, which can be avoided by randomly permuting the inputs.

The OT-Based PSI Protocol

To obtain the final PSI protocol that computes X∩Y , P2 simply invokes the private set inclusion
protocol of Section 7.4.4 for each y ∈ Y . Overall, to compute the intersection between sets X
and Y of σ-bit elements, the protocol requires n2σ/η random

(
N
1

)
-OTs of n1(λ + log2 n1) bit-

strings and additionally n1n2(λ+log2 n1) bits to be sent. Using the random
(
N
1

)
-OT of [73], the

total amount of communication is 2n2σκ/η + n1n2(λ + log2 n1) bits. For large n1 and n2, this
amount of communication grows too large for an efficient solution. In order to cope with large
sets, one can use a hashing scheme. In a hashing scheme, both parties assign their elements to
a bucket based on the output of a hash function and compare the elements that are in the same
b
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bucket. There exist various hashing schemes such as simple hashing [109], balanced allocation
hashing [5], and Cuckoo hashing [102]. Details about these schemes and their application to
our protocol above are given in [108].

7.5 Experimental Comparison

In the following we experimentally compare the PSI protocols described above. We describe
our benchmarking environment in Section 7.5.1 and then detail the comparison between the
protocols in Section 7.5.2. Fig. 7.1 compares the single-threaded runtimes and communica-
tion complexities of all protocols over Gigabit LAN. More extensive experiments can be found
in [108].

7.5.1 Benchmarking Environment

We ran our experiments on two Intel Core2Quad desktop PCs (without AES-NI extension)
with 4 GB RAM, connected via Gigabit LAN. In the experiment, P1 and P2 held the same
number of input elements n = 218 and were not allowed to perform any pre-computation. We
use σ = 32 as the bit length of the elements. We use a statistical security parameter λ = 40
and a symmetric security parameter κ = 128 (other security parameters are chosen according
to Tab. 7.1). For our set-inclusion protocol we set η = 8, i.e., use 1-out-of-28 OT extensions.

Implementations The implementation of the blind-RSA-based [34] and garbled Bloom- Fil-
ter [44] protocols were taken from the authors, but we used a hash-table to compute the last
step in the blind-RSA protocol that finds the intersection (the original implementation used
pairwise comparisons with quadratic runtime overhead). We implemented a state-of-the-art
Yao’s garbled circuits protocol (using garbled-row-reduction, point-and-permute, free-XOR,
and pipelining, cf. Section 3.2) by building on the C++ implementation of [29] and using the
fixed-key garbling scheme of [15]. For Yao’s garbled circuits protocol, we evaluated a size-
optimized version of the sort-compare-shuffle circuit (comparison circuits of size and depth σ)
while for GMW we evaluated a depth-optimized version (comparison circuits of size 3σ and
depth log2 σ) for σ-bit input values, cf. [112]. We implemented FFC (finite field cryptography)
and IFC (integer factorization cryptography) using the GMP library (v. 5.1.2), ECC using the
Miracl library (v. 5.6.1), symmetric cryptographic primitives using OpenSSL (v. 1.0.1e), and
used the OT extension implementation of [3] which requires about 3 symmetric cryptographic
operations per OT for the asymptotic performance analysis.
We argue that we provide a fair comparison, since all protocols are implemented in the same
programming language (C/C++), run on the same hardware, and use the same underlying
libraries for cryptographic operations.
For each protocol we measured the time from starting the program until the client outputs the
intersecting elements. All runtimes are averaged over 10 executions. Our results are summarized
in Fig. 7.1.

7.5.2 Performance Comparison

We divide the performance comparison in Fig. 7.1 into three categories, depending on whether
the protocol is based on public-key operations (red), circuits (blue), or OT (green).
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Figure 7.1: Runtime and communication of the outlined PSI protocols for n = 218 elements of
σ = 32-bit length using κ = 128-bit security.

Public-Key-Based PSI (red) We observe that the DH-based protocol of [62] outperforms
the RSA-based protocol of [34] when using FFC in runtime but has a larger communication
overhead. The DH-based protocol using ECC improves the performance of both FFC-based
protocols by a factor of 3 in runtime and has the lowest communication complexity among all
protocols.
The major advantage of the public-key-based protocols is their simplicity as well as their small
communication overhead.

Circuit-Based PSI (blue) Here we tested Yao- and GMW-based implementations, as well
as an implementation of our optimized vector multiplication-triple-based GMW protocol (Sec-
tion 7.3.2). The basic GMW protocol has the highest overall runtime and communication
complexity. Our vector multiplication triple optimization reduces the runtime and communica-
tion of GMW by approximately 40%. In comparison, Yao’s protocol is slightly faster but also
requires more communication.
The circuit-based PSI protocols have the highest computation and communication complexity
among all protocols that we tested. However, circuit-based protocols are of independent interest
since their functionality can be easily adapted without requiring a new security proof.

OT-Based PSI (green) The random garbled Bloom filter protocol of Section 7.4.3 improves
the original garbled Bloom filter protocol of [44] by more than a factor of two in runtime and
by factor of 2-3 in communication. We also implemented the private set inclusion and hashing
protocol in Section 7.4.4, where we used Cuckoo hashing. This protocol had the best runtime,
and was about 5 times faster than the random garbled Bloom filter protocol. In terms of
communication, the set inclusion protocol uses less than 10% of the communication of the
random garbled Bloom filter protocol.
b
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The OT-based PSI protocols have the lowest runtime among all tested protocols. Furthermore,
the set-inclusion protocol achieves less communication than the public-key-based protocols that
use FFC.
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Chapter 8

Universal Verifiability

So far, we have focused on secure computation that assures correctness of the computation
result only to those parties present at the time of the computation. However, there are various
scenarios in which it should also be possible to verify correctness by parties not involved in the
computation, i.e., when the computation should be universally verifiable. Such scenarios include
the case when external parties need to be able to verify correctness for the “common good”
(e.g., voters verifying an election result; or a competition watchdog verifying the computation
of an optimal supply chain); such parties cannot be assumed to actively participate in every
computation. Several such situations are described in PRACTICE Deliverable D12.1 [57].
However, even if parties interested in the computation would be willing to participate, if there
are many of them that would cause an unacceptable overhead. Hence, these parties should
not be actively involved in the computation, but they should be able to verify correctness of
the outcome. Note that secure computation typically only guarantees correctness and privacy
under some assumptions on the number and type of corrupted parties. Conversely, universal
verifiability requires that verifiability holds even if all parties are actively corrupted (privacy
however is still typically achieved only under assumptions on the adversary).
The problem of obtaining universally verifiable secure computation can be approached both
from direction of secure computation and from the direction of verifiable computation. As
described in earlier chapters, there is a considerable state-of-the-art in secure multi-party com-
putation; it may be possible to adapt these techniques to make them universally verifiable.
Dually, a considerable amount of work focusses on making computation efficiently verifiable
(without privacy); it may be possible to adapt these techniques to make them privacy-friendly.
In theory, combining privacy and verifiability is possible (any statement can be proven non-
interactively, and this proof procedure can be performed in a multi-party way); but in practice
it remains largely an open problem how to combine efficient (multi-party) computation with
efficient verification.
In this chapter, we survey work relevant to universally verifiable secure computation. In Sec-
tion 8.1, we discuss what adaptations to techniques for multi-party computation have been
proposed to make them universally verifiable. In Section 8.2, we discuss verifiable computa-
tion techniques with a focus on potential applicability in the multi-party setting. Finally, in
Section 8.3, we conclude with an overall review of the state-of-the-art of universally verifiable
secure computation.
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8.1 Making Secure Computation Universally Verifiable

Most of the literature on universal verifiability of secure computation has focused on particular
application domains. The classical example of an application domain where universal verifia-
bility is needed, is in e-voting. In this setting, several parties work together to determine the
election result; although it may be unavoidable that these parties can learn individual votes by
all colluding; they should at least not be able to manipulate the outcome of the election. In
the traditional solution (e.g., [19, 1]), universal verifiability is achieved in the following steps:
1) each voter posts an encryption of his vote; 2) different parties verifiably shuffle the votes;
and 3) the shuffled votes are verifiably decrypted.
A similar classical example is that of an auction, in which all bids but the winning one should
remain private, but it should be possible to verify that the winning bid was highest. This can
be achieved by encoding bids as encryptions of a fixed value F with a key corresponding to the
bid value; and verifiably decrypting all bids with the keys corresponding to higher bid values to
plaintexts other than F [111]. Note that in this case as well as in the e-voting case, verifiability
is achieved by applying tricks specific to the application, rather than using general multi-party
computation techniques (e.g., for e-voting, the computation of the votes is actually done in the
clear; only the inputs are shuffled).
On the other hand, in the case of e-voting, other proposals for universal verifiability exist
that can be generalised to achieve general universally verifiable multi-party computation. In
particular, e-voting can be based on threshold homomorphic encryption as follows: 1) each
voter posts an encryption of his votes; 2) all votes are homomorphically added; 3) the total is
verifiably decrypted to obtain the election result (e.g., [33]). In effect, this is a verifiable multi-
party computation of the homomorphic combination (e.g., sum) of the votes of the individual
voters. (The observation that this is an instance of a more general MPC protocol was used
by Groth [56] to analyse security properties of the voting schemes; unfortunately, he did not
analyse universal verifiability.)
De Hoogh [42] was the first to consider universal verifiability of general multi-party computation.
He proposes a construction based on threshold homomorphic encryption as in the above e-
voting protocols; hence, this construction can be seen as a generalisation of the above approach
to universally verifiable MPC. In particular, the construction is based on the protocols by
Cramer, Damg̊ard and Nielsen [31]. In these protocols, an arithmetic circuit is evaluated by
homomorphic addition and private multiplication using threshold decrypted values. Active
security is achieved by accompanying every decryption and multiplication by a Σ-protocol
proving its correctness. De Hoogh [42] showed that applying the Fiat-Shamir heuristic [46]
to these Σ-protocols preserves the security of the overall scheme; and then argued that the
resulting transcript is a zero-knowledge proof that the computation was correct, hence the
computation is universally verifiable. Indeed, at a high level, the transcript that the verifier
sees consists of encryptions of the input, intermediary, and output values of the computation;
and non-interactive zero knowledge proofs that they correspond to each other according to the
computed circuit.
Recently, Baum, Damg̊ard and Orlandi presented an extension to the SPDZ protocol to make it
universally verifiable [9] (called “publicly auditable” in their work). Recall from Sections 5.4,6.1
that SPDZ [40] consists of an offline phase and an online phase. In the offline phase, random
multiplication triples c = a · b and their message authentication codes (MACs) γc = αc · c,
γa = αa · a, γb = αb · b are additively shared between the computation parties. In the online
phase, these triples are used to quickly multiply shared values x, y by opening their differences
x − a, y − b and calculating a sharing of x · y from that using the well-known techniques of
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Beaver [13]. The computation is made universally verifiable by sharing, along with each value
of the computation (including the triples), also randomness for a Pedersen commitment to that
value. The verifier sees all these commitments; openings of x − a, y − b for multiplications;
and the opening of the final result. With this, he can re-compute a commitment to the result
himself, and compare it to the opening given by the computation parties. Assuming that the
Pedersen commitments for the triples are correct, the binding property of the commitments
ensures that the computation parties cannot convince the verifier of an incorrect result. Note
that the verifier also needs to audit the full offline phase of the protocol to know that the
triples are indeed correct. In contrast to the construction of [42], the auditor can only verify
correctness of outputs he learns in the clear; he cannot verify if a certain encryption contains
the correct output of the circuit evaluation.
The two generic approaches for universal verifiability by de Hoogh [42] and Baum et al. [9]
share broadly the same characteristics. On the one hand, they do not greatly slow down the
computation. In the case of [42], adding verifiability does not incur any cost for the computation
parties compared to active security (but the base protocols are quite slow); in the case of [9], the
online phase is roughly twice as slow because the commitment randomness for each computed
value needs to be kept (but the protocols are quite efficient, so this factor two may not be a
big problem). On the other hand, verification is quite heavy because the verifier needs to go
through the full circuit: in [42], by checking zero-knowledge proofs of correct multiplication
and decryption; and in [9], both by computing the commitments, and by verifying correctness
of the triples used by them. De Hoogh [42] does point to the interesting possibility of speeding
up verification by exploting the fact that for many practical problems (e.g. integer division,
computation of matrix inverse/eigenvalues), it is easier to check a given solution than to compute
it. Hence, the verifier does not need to go through the full computation circuit if instead the
computation parties verifiably run a verification circuit.
Also, both techniques depend (for correctness as well as for privacy) on a set-up to be performed
before the protocol. Either this set-up needs to be trusted by the verifier, or it needs to be
performed in an auditable way; for both approaches, it is not clear how this auditable set-up
can be practically achieved. Note, also, that both approaches have not been implemented, so
it is not known how their performance plays out in practice.

8.2 Practical Verifiable Computation

In the previous section, the known techniques for proving multi-party computation correct have
been described. The issue of proving computation correct has seen much more attention outside
the field of multi-party computation, however, and in this section we will focus on those general
techniques.
Even without employing multi-party computation or other means of providing input secrecy,
verifiable computation can still be useful for performing outsourced computation to untrusted
workers. In such a scenario, a computationally limited client can outsource a complex compu-
tation to a more powerful, but untrusted worker. The worker then provides, along with the
outcome of the computation, a proof of correctness. In this scenario, it is essential that verify-
ing the proof of correctness be more efficient than having the client carry out the computation
by itself. There are non-cryptographic solutions to this problem such as replication, trusted
hardware, attestation, and auditing; but each has assumptions on correlation of errors or trust
relations that a cryptographic solution may avoid [123]. Achieving outsourcing to untrusted
workers using cryptographic techniques has been an area of active research for the past three
decades, but only in recent years have schemes offering nearly practical efficiency emerged.b
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In this section, we will briefly discuss the important results that serve as building blocks for
most practical solutions. We will then detail those constructions that have proved sufficiently
efficient and practical to see actual implementation.

8.2.1 Arguments and Probabilistically Checkable Proofs

In order to achieve efficient verification, a relaxed notion of what constitutes a proof is re-
quired, called an argument [26]. In contrast to “real” proofs, the existence of arguments for
false statements is permitted. To be of any practical use, however, it must be infeasible for a
computationally bounded prover to find such “incorrect” arguments. The soundness of argu-
ments therefore only holds under computational assumptions on the prover.
One way to construct arguments is through the use of Probabilistically Checkable Proofs
(PCPs) [6]. A PCP is a redundant encoding of a proof that allows a verifier to be convinced of
the correctness of the proof by only inspecting a constant number of randomly selected loca-
tions (bits) in the PCP string. While this property implies very efficient verification, the highly
redundant encoding makes direct application of PCPs impossible as a solution to the verifiable
computation problem. Not only would the transmission of a PCP string be prohibitively ex-
pensive on the part of the verifier, which is required to be efficient, they are also typically too
long for the prover to even construct explicitly.
In order to avoid transmitting entire PCP strings, cryptographic protocols were developed.
These protocols are typically of an essentially interactive nature, in which the prover first
commits to a PCP, after which the verifier queries, or challenges, the prover to reveal certain
parts or properties of the PCP. It is important that the prover cannot predict the queries before
they are presented, otherwise the prover would be able to break the soundness. An important
result is due to Kilian [72], who constructed an efficient and succinct interactive argument
system by using a novel bit commitment scheme and Merkle hash trees [87] to produce a short
commitment to a PCP string the can be efficiently revealed in parts.

8.2.2 Practical Issues

Most efficient argument protocols require some form of set up, which depends on the function to
be evaluated. Often, this set up involves large amounts of expensive cryptographic operations.
To avoid this setup from being prohibitively expensive, it may be possible to reuse the same
set of repetitions for the same computation on different input data. This way, the set up costs
are amortized over many computations. It is also possible for the set up to be executed by a
trusted party.
Employing a trusted party to perform the set up can also be used to achieve universal verifiabil-
ity. In this case, the trusted party generates random challenge values and encrypts them using
some form of (partially) homomorphic encryption on behalf of the verifier. The trusted party
then publishes the encrypted challenge, eliminating the need for interactivity. When the prover
has to compute its response to the verifier’s challenge, it can do so under the encryption using
the homomorphic properties, without being able to inspect the challenge values and thereby
produce a fraudulent response. The evaluation of the verification conditions typically requires
the use of pairings. Several of the concrete protocols discussed in the following sections use this
approach to achieve universal verifiability under a trusted set up assumption.
Another well known method of eliminating interactivity, which is essential for universal verifia-
bility, is by application of the Fiat-Shamir heuristic [46]. This is the approach taken by Micali
in [89, 90], who transformed Kilian’s protocol into an efficient non-interactive argument system
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and proved its soundness in the random oracle model. Although the Fiat-Shamir heuristic is
not guaranteed to transform an interactive secure protocol into a non-interactive secure proto-
col, and there are theoretical objections to the random oracle model, this approach is useful in
practice.
For a verifiable outsourced computation system to be considered practical, it is important that
executing the verification procedure takes less time than executing the computation locally not
only asymptotically, but also for real world applications. This also implies upper bounds on
the amount of information the verifier can receive. Preferably, only a constant size proof is
transmitted, but not all of the protocols described below will achieve this. Furthermore, it
must also be possible for the prover to convince the verifier of the correctness of computation
results with relatively little overhead.
The literature on state of the art implementation gives milliseconds as the typical order of
magnitude for verification times and suggests the same order of magnitude for local execution.
The typical proof times associated with this is on the order of minutes to hours, or even months
for the most expensive systems. This discrepancy indicates that the these techniques can not yet
be considered truly practical. The term nearly practical is used to indicate this. A quantitative
comparison of state of the art implementations can be found in [123].

8.2.3 State of the Art Protocols and Implementations

In this section we will discuss the known protocols and implementations that offer near practical
verifiability of general computation.

The IKO Protocol

Until the advent of the protocol by Ishai, Kushilevitz and Ostrovsky (IKO) in 2007 [66], all
known constructions involving PCPs had the prover construct the entire PCP string and commit
to it using hash trees. While most of the preceding research focussed on producing short PCPs,
i.e., of size polynomial in the witness size, the IKO protocol avoided constructing the PCP
string explicitly, thereby greatly improving the efficiency of the prover.
Instead of attempting to construct short PCPs, the IKO protocol uses a PCP which can be
viewed as a linear function. While such a PCP may be exponentially long, the value at any
position may be inspected efficiently by evaluating this linear function. By introducing a new
commitment scheme for linear functions they were able to construct an argument system from
any linear PCP. The linear PCP used in [66] is based on a proof for circuit satisfiability and its
size is quadratic in the number of wires of the circuit.

Implementations The IKO protocol requires a large number of cryptographic operations
to deliver the commitment to the linear PCP and a similarly large amount of communication
for the challenge. The authors suggest batching computations, i.e., reusing a single commit-
ment and a single challenge to prove correctness of many computations on different inputs to
amortize the costs. In [114] batching and various other improvements to the IKO protocol
were used to produce an implementation, called Pepper, achieving nearly practical efficiency
for the production and verification of linear PCPs. Among the other improvements applied
were switching from Boolean to arithmetic circuits, which can greatly reduce circuit complexity
for computations which are arithmetic in nature; reducing the number of homomorphic encryp-
tions required for the commitment protocol by orders of magnitude and optimization of the
PCP itself.
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Following Pepper, a system called Ginger was developed [115], offering theoretical improvements
to greatly reduce the query cost of Pepper and extending the operations supported to suit more
practical computations. Ginger further reduces the latency by benefiting from GPU-based
parallelization.

Interactive Proofs for Muggles

The work of Goldwasser, Kalai and Rothblum [55] is not based on arguments, instead, their
protocol is based on interactive proofs. In the proof setting, interactivity allows for far more
efficient proofs than can be achieved non-interactively. Their protocol can also be used to create
non-interactive arguments of correct computation. The authors only describe the possibility
for designated verifier arguments, which depend on a public key of the verifier and are not
transferable. Although the authors raise objections to the random oracle model, the protocol
is also suitable for application of the Fiat-Shamir heuristic.
For interactive proofs, the prover is typically considered to be computationally unbounded.
While this allows for the existence of very powerful proof techniques, this also limits the practical
applicability of such protocols to verifiable outsourcing of computation, where the worker takes
on the role of prover. Instead, [55] require that not only the verifier, but also the prover is
computationally bounded. The computational boundedness of the prover implies even stricter
bounds on the verifier, to the point that the verifier cannot even completely inspect the circuit
whose output is being verified. This restricts the class of statements that can be proved to only
computations represented by circuits of a highly “regular” nature, for which a short description
exists.
The protocol works by proving correctness of the circuit evaluation layer by layer. Starting
with the output layer, proving correctness of one layer is reduced to proving correctness of the
preceding layer. This reduction is efficiently possible, because the verifier possesses a short
description of the circuit and therefore of each layer. Finally, correctness of the output is
reduced to correctness of the input, which the verifier can inspect.

Implementations Cormode, Mitzenmacher and Thaler [30] find that the GKR protocol is
applicable in a streaming verifier setting, in which the verifier outsources some computation
over a data stream to the prover, but the verifier’s resources are limited so that it is not able
to store the entire input stream. They present enhancements to the GKR protocol achieving
prover time that is only quasilinear in the circuit size, as opposed to the original GKR protocol,
which offers polynomial time in the circuit size. In addition to implementing the GKR protocol,
they also present specialized protocols for proving correct computation for specific problems,
such as matrix vector multiplication and pattern matching.
In a subsequent work [119], Thaler refines the protocol even further for circuits satisfying
concretely specified regularity properties. The refined protocol achieves prover time linear in
the circuit size. Although not all computations can be described using such regular circuits,
this does cover important problems such as matrix multiplication. Additionally, Thaler applies
the protocol to computations in which the same circuit, which does not necessarily satisfy the
regularity property, is applied many times independently and in parallel to many input values
and achieves prover time that scales linearly, rather than quasilinearly, in the number of input
values. Finally, a specific protocol for proving square matrix multiplication is given with prover
time quadratic in the height (or width) of the matrix, which means that asymptotically, the
prover time is dominated by computing the matrix multiplication itself, not by the time needed
to construct the proof.
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Quadratic Arithmetic Programs

In 2013, Gennaro et al. introduced a new characterization of the complexity class NP, namely
Quadratic Span Programs (QSP) [51]. While QSPs can describe any computation, this property
is not used directly to specify and verify computations. Instead, the authors demonstrate how
to efficiently construct a QSP for computing circuit satisfiability, given the circuit values.
In essence, circuit satisfiability can be verified using a QSP by checking that a special (circuit
dependent) target polynomial divides a polynomial composed of a (circuit dependent) set of
polynomials and the circuit’s wire assignments. Polynomial divisibility can be efficiently inter-
actively verified and the verification can be made non-interactive in the CRS model, using the
general challenge hiding approach.
Arithmetic circuits are typically smaller than Boolean circuits representing the same computa-
tion and tend to be more practical for describing general computations. Quadratic Arithmetic
Programs (QAP), the arithmetic counterpart to QSPs, can be used be used to prove satisfia-
bility of arithmetic circuits and are therefore more suitable for real applications.

Implementations The most straightforward implementation of a QAP based verification
system is Pinocchio [103], which, apart from introducing the necessary implementation refine-
ments and reducing the QAP complexity, uses QAPs in the manner described by [51].
It was also observed in [21] that QAPs can be considered linear PCPs and that the QAP-based
PCP for circuit satisfiability scales quasilinearly in the circuit size, in contrast to the PCP used
in [66], which scales quadratically. Implementation of the QAP-based linear PCP in the Pepper
line of systems based on the IKO protocol resulted in a system called Zaatar [113].
Although arithmetic circuits are sufficiently expressive for specifying general computations, it
is more natural to do so using a high level programming language. [17] produced a C compiler
for a random access machine architecture called TinyRAM, which generates arithmetic circuits.
Unlike previous circuit compilers, that either don’t support data dependent loops, control flow
and memory access, or do support those at the cost of quadratic complexity, the [17] compiler
manages to produce circuits of quasilinear complexity by supporting a non-deterministic witness
representing a trace of the program’s state or memory as it is being executed. They further use
QAPs as an efficient means to prove circuit satisfiability and apply the numerous optimizations
necessary to implement an argument system for general computation. The resulting system
brings verifiable computation closer to practicality by avoiding the need for the computation
to be specified as an arithmetic circuit.
The system of [17], as does Pinocchio, requires an expensive set-up stage which depends on
the function to be computed. Although after the set-up the computation can be repeated
many times and on different inputs, a new set-up is required when a different function is to be
computed. The work of [17] was followed up by [18] by employing universal circuits to support
a von Neumann architecture, called vnTinyRAM, supporting such programming techniques
as self-modifying code and just-in-time compilation. This work further generalizes the set of
programs supported for verifiable computation. The only restriction imposed by this system is
an upper bound on the computation’s running time, which is inherent in the use of universal
circuits.

8.3 Universally Verifiable Secure Computation

The above discussion suggests that, although universally verifiable secure computation is pos-
sible today, it may profit from general verifiable computation results. Adding verifiability to
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multi-party computation is possible in some cases without too much changes to existing proto-
cols, but in this case the verifier needs to perform work for each gate in the circuit [42, 9].
On the other hand, recent results from (non-privacy-friendly) verifiable computation, e.g., [51,
17] allow very efficient verification: proofs in the order of hundreds of bytes, which can be verified
in milliseconds. (All this is assuming a trusted set-up stage which depends on the computation
to be performed, but this may be acceptable in many application domains.) However, in
the verifiable computation literature, privacy has not been considered much (with the notable
exception of [50], who define privacy in this setting, and provide a theoretical solution based
on fully homomorphic encryption). In theory, obtaining efficiently verifiable proofs is possible
(simply by making the construction of the proof a multi-party computation); but distributing
the construction of these proofs in practice is still open. Also, the “best” proof for verification
may not be the best proof for secure computation; alternative approaches to those discussed
above, e.g., based on attribute-based encryption [104], may turn out to lend themselves better
to translation to the secure computation setting.
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Chapter 9

Summary and Conclusions

Secure multi-party computation (MPC) enables a set of untrusting parties to compute arbitrary
functions of their confidential inputs while revealing nothing but the final output of the function,
and ensuring the correctness of the computation. This technology is particularly relevant in
cloud settings where clients store and use confidential data on external cloud servers.
Initial research in MPC showed very strong feasibility results demonstrating that any function
can be securely and efficiently computed. However, these results were theoretical in nature and
were not efficient in practice. In recent years there have been tremendous improvements in the
practical performance of protocols for secure computation.
Partners in the PRACTICE project are among the pioneers and leaders in MPC research.
In this deliverable we identified and summarized the best state of the art MPC technologies
(some of them were developed by PRACTICE researchers). Furthermore, the deliverable will
tremendously assist the project in identifying aspects that need to be improved for real world
cloud deployments of MPC. These aspects will be optimized in PRACTICE, in order to be
deployed in the next phase of the project, and allow for cloud computing on encrypted data.
The techniques are already partially implemented by the project partners and could be shown
in the project’s second year demos.
The current state of the art can be summarized as follows:

• In the case of two parties, and security against semi-honest adversaries, the best protocols
are variants of Yao’s basic protocol for secure two-party computation. There have been
many recent improvements of that protocol, improving both the evaluation of the gates,
and the oblivious transfer operations applied to the inputs.

• In the case of two parties and security against malicious adversaries, there are recent
efficient variants of Yao’s protocol based on the cut-and-choose methodology. These
protocols use multiple copies of the circuit, where some copies are checked for correctness
and some are evaluated. Protocols of this type were greatly improved in recent years,
especially in terms of their amortized complexity.

• In the case of more than two parties, and security against semi-honest adversaries, the
best protocols are based on the methodology of the BGW and CCD protocols. These
protocols have been used in actual commercial deployments and are ready for industrial
use.

• In the case of more than two parties, and security against malicious adversaries, the best
protocols belong to the SPDZ family. These protocols first run a preprocessing phase
which is rather heavy but can be computed before the inputs to the computation are
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known. The actual online computation which is run after the inputs are received is
extremely efficient. This approach can also be applied to the two-party case.

• When it is needed to compute specific functions and the performance of the computation is
of great importance, it makes sense to design specialized protocols rather than computing
them using generic protocols. This task requires cryptographic expertise, whereas the
usage of generic protocols only requires describing the function as a Boolean function.

Secure multi-party computation is still a dynamic research area where new protocols and new
improvements are presented every year. The performance of secure computation will always
be slower than that of naive insecure computation. However, the research community, and
PRACTICE partners in particular, are working hard on closing the gap between the theory
and practice of secure computation. We expect that, based on the results of the project, the
technology will soon be ready for usage in computing on encrypted data in cloud environments.
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Chapter 10

List of Abbreviations

EC European Commission

ECC Elliptic curve cryptography

FFC Finite field cryptography

IFC Integer factorization cryptography

FHE Fully homomorphic encryption

MAC Message authentication code

MPC Multi-party computation

OPRG Oblivious pseudo-random generator

OT Oblivious transfer

PCP Probabilistically checkable proofs

PEQT Private equality test

PSI Private set intersection

QAP Quadratic arithmetic programs

QSP Quadratic span programs

SCS Sort-compare-shuffle
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