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Abstract. Recently, there has been huge progress in the field of con-
cretely e�cient secure computation, even while providing security in the
presence of malicious adversaries. This is especially the case in the two-
party setting, where constant-round protocols exist that remain fast even
over slow networks. However, in the multi-party setting, all concretely
e�cient fully-secure protocols, such as SPDZ, require many rounds of
communication.
In this paper, we present an MPC protocol that is fully-secure in the
presence of malicious adversaries and for any number of corrupted par-
ties. Our construction is based on the constant-round BMR protocol of
Beaver et al., and is the first fully-secure version of that protocol that
makes black-box usage of the underlying primitives, and is therefore con-
cretely e�cient.
Our protocol includes an online phase that is extremely fast and mainly
consists of each party locally evaluating a garbled circuit. For the o✏ine
phase we present both a generic construction (using any underlying MPC
protocol), and a highly e�cient instantiation based on the SPDZ proto-
col. Our estimates show the protocol to be considerably more e�cient
than previous fully-secure multi-party protocols.

1 Introduction

Background: Protocols for secure multi-party computation (MPC) enable a set
of mutually distrustful parties to securely compute a joint functionality of their
inputs. Such a protocol must guarantee privacy (meaning that only the output
is learned), correctness (meaning that the output is correctly computed from the
inputs), and independence of inputs (meaning that each party must choose its
input independently of the others). Formally, security is defined by comparing
the distribution of the outputs of all parties in a real protocol to an ideal model
where an incorruptible trusted party computes the functionality for the parties.
The two main types of adversaries that have been considered are semi-honest
adversaries who follow the protocol specification but try to learn more than
allowed by inspecting the transcript, and malicious adversaries who can run any
arbitrary strategy in an attempt to break the protocol. Secure MPC has been
studied since the late 1980s, and powerful feasibility results were proven showing
that any two-party or multi-party functionality can be securely computed [21,
10], even in the presence of malicious adversaries. When an honest majority



(or 2/3 majority) is assumed, then security can even be obtained information
theoretically [3, 4, 18]. In this paper, we focus on the problem of security in the
presence of malicious adversaries, and a dishonest majority.

Recently, there has been much interest in the problem of concretely e�cient
secure MPC, where “concretely e�cient” refers to protocols that are su�ciently
e�cient to be implemented in practice (in particular, these protocols should
only make black-box usage of cryptographic primitives; they must not, say, use
generic ZK proofs that operate on the circuit representation of these primitives).
In the last few years there has been tremendous progress on this problem, and
there now exist extremely fast protocols that can be used in practice; see [14–16,
13, 8] for just a few examples. In general, there are two approaches that have
been followed; the first uses Yao’s garbled circuits [21] and the second utilizes
interaction for every gate like the GMW protocol [10].

There are extremely e�cient variants of Yao’s protocol for the two party
case that are secure against malicious adversaries (e.g., [14, 15]). These proto-
cols run in a constant number of rounds and therefore remain fast over slow
networks. The BMR protocol [1] is a variant of Yao’s protocol that runs in a
multi-party setting with more than two parties. This protocol works by the par-
ties jointly constructing a garbled circuit (possibly in an o✏ine phase), and then
later computing it (possibly in an online phase). However, in the case of mali-
cious adversaries this protocol su↵ers from two main drawbacks: (1) Security is
only guaranteed if at most a minority of the parties are corrupt; (2) The proto-
col uses generic protocols secure against malicious adversaries (say, the GMW
protocol) that evaluate the pseudorandom generator used in the BMR protocol.
This non black-box construction results in an extremely high overhead.

The TinyOT and SPDZ protocols [16, 8] follow the GMW paradigm, and have
o✏ine and online phases. Both of these protocols overcome the issues of the BMR
protocol in that they are secure against any number of corrupt parties, make only
black-box usage of cryptographic primitives, and have very fast online phases
that require only very simple (information theoretic) operations. (A black-box
constant-round MPC construction appears in [11]; however, it is not“concretely
e�cient”.) In the case of multi-party computation with more than two parties,
these protocols are currently the only practical approach known. However, since
they follow the GMW paradigm, their online phase requires a communication
round for every multiplication gate. This results in a large amount of interaction
and high latency, especially over slow networks. To sum up, there is no known
concretely e�cient constant-round protocol for the multi-party case (with the
exception of [5] that considers the specific three-party case only). Our work
introduces the first protocol with these properties.

Our contribution: In this paper, we provide the first concretely e�cient const-
ant-round protocol for the general multi-party case, with security in the presence
of malicious adversaries. The basic idea behind the construction is to use an ef-
ficient non-constant round protocol – with security for malicious adversaries –
to compute the gate tables of the BMR garbled circuit (and since the computa-
tion of these tables is of constant depth, this step is constant round). A crucial
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observation, resulting in a great performance improvement, shows that in the
o✏ine stage it is not required to verify the correctness of the computations of the
di↵erent tables. Rather, validation of the correctness is an immediate by product
of the online computation phase, and therefore does not add any overhead to
the computation. Although our basic generic protocol can be instantiated with
any non-constant round MPC protocol, we provide an optimized version that
utilizes specific features of the SPDZ protocol [8].

In our general construction, the new constant-round MPC protocol consists
of two phases. In the first (o✏ine) phase, the parties securely compute random
shares of the BMR garbled circuit. If this is done naively, then the result is
highly ine�cient since part of the computation involves computing a pseudo-
random generator or pseudorandom function multiple times for every gate. By
modifying the original BMR garbled circuit, we show that it is possible to actu-
ally compute the circuit very e�ciently. Specifically, each party locally computes
the pseudorandom function as needed for every gate (in our construction we use
a pseudorandom function rather than a pseudorandom generator), and uses the
results as input to the secure computation. Our proof of security shows that if
a party cheats and inputs incorrect values then no harm is done, since it can
only cause the honest parties to abort (which is anyway possible when there is
no honest majority). Next, in the online phase, all that the parties need to do is
reconstruct the single garbled circuit, exchange garbled values on the input wires
and locally compute the garbled circuit. The online phase is therefore very fast.

In our concrete instantiation of the protocol using SPDZ [8], there are actu-
ally three separate phases, with each being faster than the previous. The first
two phases can be run o✏ine, and the last phase is run online after the inputs
become known.

– The first (slow) phase depends only on an upper bound on the number of
wires and the number of gates in the function to be evaluated. This phase
uses Somewhat Homomorphic Encryption (SHE) and is equivalent to the
o✏ine phase of the SPDZ protocol.

– The second phase depends on the function to be evaluated but not the func-
tion inputs; in our proposed instantiation this mainly involves information
theoretic primitives and is equivalent to the online phase of the SPDZ pro-
tocol.

– In the third phase the parties provide their input and evaluate the function;
this phase just involves exchanging shares of the circuit and garbled values
on the input wire and locally computing the BMR garbled circuit.

We stress that our protocol is constant round in all phases since the depth of
the circuit required to compute the BMR garbled circuit is constant. In addition,
the computational cost of preparing the BMR garbled circuit is not much more
than the cost of using SPDZ itself to compute the functionality directly. However,
the key advantage that we gain is that our online time is extraordinarily fast,
requiring only two rounds and local computation of a single garbled circuit. This
is faster than all other existing circuit-based multi-party protocols.
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Finite field optimization of BMR: In order to e�ciently compute the BMR
garbled circuit, we define the garbling and evaluation operations over a finite
field. A similar technique of using finite fields in the BMR protocol was intro-
duced in [2] in the case of semi-honest security against an honest majority. In
contrast to [2], our utilization of finite fields is carried out via vectors of field el-
ements, and uses the underlying arithmetic of the field as opposed to using very
large finite fields to simulate integer arithmetic. This makes our modification in
this respect more e�cient.

2 The General Protocol

2.1 Modified BMR Garbling

In order to facilitate fast secure computation of the garbled circuit in the o✏ine
phase, we make some changes to the original BMR garbling described in Ap-
pendix A. First, instead of using XOR of bit strings, and hence a binary circuit
to instantiate the garbled gate, we use additions of elements in a finite field,
and hence an arithmetic circuit. This idea was used by [2] in the FairplayMP
system, which used the BGW protocol [3] in order to compute the BMR circuit.
Note that FairplayMP achieved semi-honest security with an honest majority,
whereas our aim is malicious security for any number of corrupted parties.

Second, we observe that the external values3 do not need to be explicitly
encoded, since each party can learn them by looking at its own “part” of the
garbled value. In the original BMR garbling, each superseed contains n seeds
provided by the parties. Thus, if a party’s zero-seed is in the decrypted superseed
then it knows that the external value (denoted by ⇤) is zero, and otherwise it
knows that it is one.

Naively, it seems that independently computing each gate securely in the
o✏ine phase is insu�cient, since the corrupted parties might use inconsistent
inputs for the computations of di↵erent gates. For example, if the output wire
of gate g is an input to gate g0, the input provided for the computation of
the table of g might not agree with the inputs used for the computation of
the table of g0. It therefore seems that the o✏ine computation must verify the
consistency of the computations of di↵erent gates. This type of verification would
greatly increase the cost since the evaluation of the pseudorandom functions (or
pseudorandom generator in the original BMR) used in computing the tables
needs to be be checked inside the secure computation. This means that the
pseudorandom function is not treated as a black box, and the circuit for the
o✏ine phase would be huge (as it would include multiple copies of a subcircuit
for computing pseudorandom function computations for every wire). Instead, we
prove that this type of corrupt behavior can only result in an abort in the online
phase, which would not a↵ect the security of the protocol. This observation
enables us to compute each gate independently and model the pseudorandom

3
The external values (as denoted in [2]) are the signals (as denoted in [1]) observable by the parties
when evaluating the circuit in the online phase.
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function used in the computation as a black box, thus simplifying the protocol
and optimizing its performance.

We also encrypt garbled values as vectors; this enables us to use a finite field
that can encode {0, 1} (for each vector coordinate), rather than a much larger
finite field that can encode all of {0, 1}n·. Due to this, the parties choose keys
(for a pseudorandom function) rather than seeds for a pseudorandom generator.
The keys that Pi chooses for wire w are denoted kiw,0 and kiw,1, which will be
elements in a finite field Fp such that 2 < p < 2+1. In fact we pick p to be
the smallest prime number larger than 2, and set p = 2 + ↵, where (by the
prime number theorem) we expect ↵ ⇡ . We shall denote the pseudorandom
function by Fk(x), where the key and output will be interpreted as elements of
Fp in much of our MPC protocol. In practice the function Fk(x) we suggest will
be implemented using CBC-MAC using a block cipher enc with key and block
size  bits, as Fk(x) = CBC-MACenc(k (mod 2), x). Note that the inputs x to
our pseudorandom function will all be of the same length and so using naive
CBC-MAC will be secure.

We interpret the -bit output of Fk(x) as an element in Fp where p = 2+↵.
Note that a mapping which sends an element k 2 Fp to a -bit block cipher key
by computing k (mod 2) induces a distribution on the key space of the block
cipher which has statistical distance from uniform of
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The output of the function Fk(x) will also induce a distribution which is close
to uniform on Fp. In particular the statistical distance of the output in Fp, for a
block cipher with block size , from uniform is given by
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(note that 1� 2

p = ↵
p ). In practice we set  = 128, and use the AES cipher as

the block cipher enc. The statistical di↵erence is therefore negligible.

The goal of this paper is to present a protocol ⇧SFE which implements the
Secure Function Evaluation (SFE) functionality of Functionality 1 in a constant
number of rounds in the case of a malicious dishonest majority. Our constant
round protocol ⇧SFE implementing FSFE is built in the FMPC-hybrid model, i.e.
utilizing a sub-protocol ⇧MPC which implements the functionality FMPC given
in Functionality 2. The generic MPC functionality FMPC is reactive. We require
a reactive MPC functionality because our protocol ⇧SFE will make repeated
sequences of calls to FMPC involving both output and computation commands.
In terms of round complexity, all that we require of the sub-protocol ⇧MPC is
that each of the commands which it implements can be implemented in constant
rounds. Given this requirement our larger protocol ⇧SFE will be constant round.
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Functionality 1 (The SFE Functionality: FSFE)

The functionality is parameterized by a function f(x1, . . . , xn

) which is input
as a binary circuit C

f

. The protocol consists of 3 externally exposed commands
Initialize, InputData, and Output and one internal subroutine Wait.

Initialize: On input (init , C
f

) from all parties, the functionality activates
and stores C

f

.
Wait: This waits on the adversary to return a GO/NO-GO decision. If the

adversary returns NO-GO then the functionality aborts.
InputData: On input (input , P

i

, varid , x
i

) from P

i

and (input , P
i

, varid , ?)
from all other parties, with varid a fresh identifier, the functionality stores
(varid , x

i

). The functionality then calls Wait.
Output: On input (output) from all honest parties the functionality computes

y = f(x1, . . . , xn

) and outputs y to the adversary. The functionality then
calls Wait. Only if Wait does not abort it outputs y to all parties.

Functionality 2 (The Generic Reactive MPC Functionality: FMPC)

The functionality consists of five externally exposed commands Initialize, In-
putData, Add, Multiply, and Output, and one internal subroutine Wait.

Initialize: On input (init , p) from all parties, the functionality activates and
stores p. All additions and multiplications below will be mod p.

Wait: This waits on the adversary to return a GO/NO-GO decision. If the
adversary returns NO-GO then the functionality aborts.

InputData: On input (input , P
i

, varid , x) from P

i

and (input , P
i

, varid , ?)
from all other parties, with varid a fresh identifier, the functionality stores
(varid , x). The functionality then calls Wait.

Add: On command (add , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the functional-
ity retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y mod p). The
functionality then calls Wait.

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the function-
ality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y mod p). The
functionality then calls Wait.

Output: On input (output , varid , i) from all honest parties (if varid is present
in memory), the functionality retrieves (varid , x) and outputs either
(varid , x) in the case of i 6= 0 or (varid) if i = 0 to the adversary. The
functionality then calls Wait, and only if Wait does not abort then it
outputs x to all parties if i = 0, or it outputs x only to party i if i 6= 0.

In what follows we use the notation [varid ] to represent the result stored in
the variable varid by the FMPC or FSFE functionality. In particular we use the
arithmetic shorthands [z] = [x] + [y] and [z] = [x] · [y] to represent the result of
calling the Add and Multiply commands on the FMPC functionality.
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2.2 The O✏ine Functionality: preprocessing-I and preprocessing-II

Our protocol, ⇧SFE, is comprised of an o✏ine-phase and an online-phase, where
the o✏ine-phase, which implements the functionality Fo✏ine, is divided into two
subphases: preprocessing-I and preprocessing-II. To aid exposition we first present
the functionality Fo✏ine in Functionality 3. In the next section, we present an
e�cient methodology to implement Fo✏ine which uses the SPDZ protocol as
the underlying MPC protocol for securely computing functionality FMPC; while
in Appendix B we present a generic implementation of Fo✏ine based on any
underlying protocol ⇧MPC implementing FMPC.

In describing functionality Fo✏ine we distinguish between attached wires and
common wires: the attached wires are the circuit-input-wires that are directly
connected to the parties (i.e., these are inputs wires to the circuit). Thus, if every
party has ` inputs to the functionality f then there are n · ` attached wires. The
rest of the wires are considered as common wires, i.e. they are directly connected
to none of the parties.

Our preprocessing-I takes as input an upper bound W on the number of wires
in the circuit, and an upper bound G on the number of gates in the circuit.
The upper bound G is not strictly needed, but will be needed in any e�cient
instantiation based on the SPDZ protocol. In contrast preprocessing-II requires
knowledge of the precise function f being computed, which we assume is encoded
as a binary circuit Cf .

In order to optimize the performance of the preprocessing-II phase, the secure
computation does not evaluate the pseudorandom function F (), but rather has
the parties compute F () and provide the results as an input to the protocol. Ob-
serve that corrupted parties may provide incorrect input values Fki

x,j

() and thus

the resulting garbled circuit may not actually be a valid BMR garbled circuit.
Nevertheless, we show that such behavior can only result in an abort. This is due
to the fact that if a value is incorrect and honest parties see that their key (co-
ordinate) is not present in the resulting vector then they will abort. In contrast,
if their seed is present then they proceed and the incorrect value had no e↵ect.
Since the keys are secret, the adversary cannot give an incorrect value that will
result in a correct di↵erent key, except with negligible probability. This is impor-
tant since otherwise correctness would be harmed. Likewise, a corrupted party
cannot influence the masking values �, and thus they are consistent throughout
(when a given wire is input into multiple gates), ensuring correctness.

2.3 Securely Computing F
SFE

in the F
o✏ine

-Hybrid Model

We now define our protocol ⇧SFE for securely computing FSFE (using the BMR
garbled circuit) in the Fo✏ine-hybrid model, see Protocol 1.

2.4 Implementing F
o✏ine

in the F
MPC

-Hybrid Model

At first sight, it may seem that in order to construct an entire garbled circuit (i.e.
the output of Fo✏ine), an ideal functionality that computes each garbled gate can
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Functionality 3 (The O✏ine Functionality – Fo✏ine)

This functionality runs the same Initialize, Wait, InputData and Output
commands as FMPC (Functionality 2). In addition, the functionality has two
additional commands preprocessing-I and preprocessing-II, as follows.

preprocessing-I: On input (preprocessing-I,W,G), for all wires w 2 [1, . . . ,W ]:
– The functionality chooses and stores a random masking value [�

w

]
where �

w

2 {0, 1}.
– For 1  i  n and � 2 {0, 1},

• The functionality stores a key of user i for wire w and value �,
[ki

w,�

] where k

i

w,�

2 F
p

• The functionality outputs [ki

w,�

] to party i by running Output
as in functionality FMPC.

preprocessing-II: On input of (preprocessing-II, C
f

) for a circuit C

f

with at
most W wires and G gates.
– For all wires w which are attached to party P

i

the functionality opens
[�

w

] to party P

i

by running Output as in functionality FMPC.
– For all output wires w the functionality opens [�

w

] to all parties by
running Output as in functionality FMPC.

– For every gate g with input wires 1  a, b  W and output wire
1  c W .
• Party P

i

provides the following values for x 2 {a, b} by running
InputData as in functionality FMPC:

F

k

i

x,0
(0k1kg), . . . , F

k

i

x,0
(0knkg) F

k

i

x,0
(1k1kg), . . . , F

k

i

x,0
(1knkg)

F

k

i

x,1
(0k1kg), . . . , F

k

i

x,1
(0knkg) F

k

i

x,1
(1k1kg), . . . , F

k

i

x,1
(1knkg)

• Define the selector variables

�1 =

(

0 if f
g

(�
a

,�

b

) = �

c

1 otherwise

�2 =

(

0 if f
g

(�
a

,�

b

) = �

c

1 otherwise

�3 =

(

0 if f
g

(�
a

,�

b

) = �

c

1 otherwise

�4 =

(

0 if f
g

(�
a

,�

b

) = �

c

1 otherwise

• Set A
g

= (A1
g

, . . . , A

n

g

), B
g

= (B1
g

, . . . , B

n

g

), C
g

= (C1
g

, . . . , C

n

g

),
and D

g

= (D1
g

, . . . , D

n

g

) where for 1  j  n:

A

j

g

=

 

n

X

i=1

F

k

i

a,0
(0kjkg) + F

k

i

b,0
(0kjkg)

!

+ k

j

c,�1

B

j

g

=

 

n

X

i=1

F

k

i

a,0
(1kjkg) + F

k

i

b,1
(0kjkg)

!

+ k

j

c,�2

C

j

g

=

 

n

X

i=1

F

k

i

a,1
(0kjkg) + F

k

i

b,0
(1kjkg)

!

+ k

j

c,�3

D

j

g

=

 

n

X

i=1

F

k

i

a,1
(1kjkg) + F

k

i

b,1
(1kjkg)

!

+ k

j

c,�4

• The functionality stores the values [A
g

], [B
g

], [C
g

], [D
g

].
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Protocol 1 (⇧SFE: Securely Computing FSFE in the Fo✏ine-Hybrid Model)

On input of a circuit C
f

representing the function f which consists of at most
W wires and at most G gates the parties execute the following commands.

Pre-Processing: This procedure is performed as follows
1. Call Initialize on Fo✏ine with the smallest prime p in {2, . . . , 2+1}.
2. Call Preprocessing-I on Fo✏ine with input W and G.
3. Call Preprocessing-II on Fo✏ine with input C

f

.
Online Computation: This procedure is performed as follows

1. For all input wires w for party P

i

the party takes his input bit ⇢
w

and
computes ⇤

w

= ⇢

w

��

w

, where �

w

was obtained in the preprocessing
stage. The value ⇤

w

is broadcast to all parties.
2. Party i calls Output on Fo✏ine to open [ki

w,⇤

w

] for all his input wires
w, we denote the resulting value by k

i

w

.
3. The parties call Output on Fo✏ine to open [A

g

], [B
g

], [C
g

] and [D
g

]
for every gate g.

4. Passing through the circuit topologically, the parties can now locally
compute the following operations for each gate g

– Let the gates input wires be labeled a and b, and the output wire
be labeled c.

– For j = 1, . . . , n compute k

j

c

according to the following cases:
• Case 1 – (⇤

a

,⇤

b

) = (0, 0): compute

k

j

c

= A

j

g

�
 

n

X

i=1

F

k

i

a

(0kjkg) + F

k

i

b

(0kjkg)
!

.

• Case 2 – (⇤
a

,⇤

b

) = (0, 1): compute

k

j

c

= B

j

g

�
 

n

X

i=1

F

k

i

a

(1kjkg) + F

k

i

b

(0kjkg)
!

.

• Case 3 – (⇤
a

,⇤

b

) = (1, 0): compute

k

j

c

= C

j

g

�
 

n

X

i=1

F

k

i

a

(0kjkg) + F

k

i

b

(1kjkg)
!

.

• Case 4 – (⇤
a

,⇤

b

) = (1, 1): compute

k

j

c

= D

j

g

�
 

n

X

i=1

F

k

i

a

(1kjkg) + F

k

i

b

(1kjkg)
!

.

– If ki

c

/2 {ki

c,0, k
i

c,1}, then P

i

outputs abort. Otherwise, it proceeds.
If P

i

aborts it notifies all other parties with that information. If
P

i

is notified that another party has aborted it aborts as well.
– If ki

c

= k

i

c,0 then P

i

sets ⇤
c

= 0; if ki

c

= k

i

c,1 then P

i

sets ⇤
c

= 1.
– The output of the gate is defined to be (k1

c

, . . . , k

n

c

) and ⇤

c

.
5. Assuming party P

i

does not abort it will obtain ⇤

w

for every circuit-
output wire w. The party can then recover the actual output value
from ⇢

w

= ⇤

w

��
w

, where �
w

was obtained in the preprocessing stage.
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be used separately for each gate of the circuit (that is, for each gate the parties
provide their PRF results on the keys and shares of the masking values asso-
ciated with that gate’s wires). This is su�cient when considering semi-honest
adversaries. However, in the setting of malicious adversaries, this can be prob-
lematic since parties may input inconsistent values. For example, the masking
values �w that are common to a number of gates (which happens when any wire
enters more than one gate) need to be identical in all of these gates. In addi-
tion, the pseudorandom function values may not be correctly computed from the
pseudorandom function keys that are input. In order to make the computation
of the garbled circuit e�cient, we will not check that the pseudorandom func-
tion values are correct. However, it is necessary to ensure that the �w values are
correct, and that they (and likewise the keys) are consistent between gates (e.g.,
as in the case where the same wire is input to multiple gates). We achieve this
by computing the entire circuit at once, via a single functionality.

The cost of this computation is actually almost the same as separately com-
puting each gate. The single functionality receives from party Pi the values
kiw,0, k

i
w,1 and the output of the pseudorandom function applied to the keys only

once, regardless of the number of gates to which w is input. Thereby consistency
is immediate throughout, and this potential attack is prevented. Moreover, the
�w values are generated once and used consistently by the circuit, making it easy
to ensure that the � values are correct.

Another issue that arises is that the single garbled gate functionality expects
to receive a single masking value for each wire. However, since this value is secret,
it must be generated from shares that are input by the parties. In Appendix B we
describe the full protocol for securely computing Fo✏ine in the FMPC-hybrid model
(i.e., using any protocol that securely computes the FMPC ideal functionality).
In short, the parties input shares of �w to the functionality, the single masking
value is computed from these shares, and then input to all the necessary gates.

In the semi-honest case, the parties could contribute a share which is random
in {0, 1} (interpreted as an element in Fp) and then compute the product of all
the shares (using the underlying MPC) to obtain a random masking value in
{0, 1}. This is however not the case in the malicious case since parties might
provide a share that is not from {0, 1} and thus the resulting masking value
wouldn’t likewise be from {0, 1}

This issue is solved in the following way. The computation is performed by
having the parties input random masking values �i

w 2 {1,�1}, instead of bits.
This enables the computation of a value µw to be the product of �1

w, . . . ,�
n
w and

to be random in {�1, 1} as long as one of them is random. The product is then
mapped to {0, 1} in Fp by computing �w = µ

w

+1
2 .

In order to prevent corrupted parties from inputting �i
w values that are not

in {�1,+1}, the protocol for computing the circuit outputs (
Qn

i=1 �
i
w)

2 � 1, for
every wire w (where �i

w is the share contributed from party i for wire w), and
the parties can simply check whether it is equal to zero or not. Thus, if any party
cheats by causing some �w /2 {�1,+1}, then this will be discovered since the
circuit outputs a non-zero value for (

Qn
i=1 �

i
w)

2�1, and so the parties detect this

10



and can abort. Since this occurs before any inputs are used, nothing is revealed
by this. Furthermore, if

Qn
i=1 �

i
w 2 {�1,+1}, then the additional value output

reveals nothing about �w itself.

In the next section we shall remove all of the complications by basing our
implementation for FMPC upon the specific SPDZ protocol. The reason why the
SPDZ implementation is simpler – and more e�cient – is that SPDZ provides
generation of such shared values e↵ectively for free.

3 The SPDZ Based Instantiation

Functionality 4 (The SPDZ Functionality: FSPDZ)

The functionality consists of seven externally exposed commands Initialize,
InputData, RandomBit, Random, Add, Multiply, and Output and one
internal subroutine Wait.

Initialize: On input (init , p,M,B,R, I) from all parties, the functionality
activates and stores p. Pre-processing is performed to generate data needed
to respond to a maximum of M Multiply, B RandomBit, R Random
commands, and I InputData commands per party.

Wait: This waits on the adversary to return a GO/NO-GO decision. If the
adversary returns NO-GO then the functionality aborts.

InputData: On input (input , P
i

, varid , x) from P

i

and (input , P
i

, varid , ?)
from all other parties, with varid a fresh identifier, the functionality stores
(varid , x). The functionality then calls Wait.

RandomBit: On command (randombit , varid) from all parties, with varid
a fresh identifier, the functionality selects a random value r 2 {0, 1} and
stores (varid , r). The functionality then calls Wait.

Random: On command (random, varid) from all parties, with varid a fresh
identifier, the functionality selects a random value r 2 F

p

and stores
(varid , r). The functionality then calls Wait.

Add: On command (add , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory), the functionality retrieves
(varid1, x), (varid2, y), stores (varid3, x+ y) and then calls Wait.

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory), the functionality retrieves
(varid1, x), (varid2, y), stores (varid3, x · y) and then calls Wait.

Output: On input (output , varid , i) from all honest parties (if varid is present
in memory), the functionality retrieves (varid , x) and outputs either
(varid , x) in the case of i 6= 0 or (varid) if i = 0 to the adversary. The
functionality then calls Wait, and only if Wait does not abort then it
outputs x to all parties if i = 0, or it outputs x only to party i if i 6= 0.

11



3.1 Utilizing the SPDZ Protocol

As discussed in Section 2.1, in the o✏ine-phase we use an underlying secure
computation protocol, which, given a binary circuit and the matching inputs to
its input wires, securely and distributively computes that binary circuit. In this
section we simplify and optimize the implementation of the protocol⇧o✏ine which
implements the functionality Fo✏ine by utilizing the specific SPDZ MPC protocol
as the underlying implementation of FMPC. These optimizations are possible
because the SPDZ MPC protocol provides a richer interface to the protocol
designer than the naive generic MPC interface given in functionality FMPC. In
particular, it provides the capability of directly generating shared random bits
and strings. These are used for generating the masking values and pseudorandom
function keys. Note that one of the most expensive steps in FairplayMP [2] was
coin tossing to generate the masking values; by utilizing the specific properties
of SPDZ this is achieved essentially for free.

In Section 3.2 we describe explicit operations that are to be carried out on the
inputs in order to achieve the desired output; the circuit’s complexity analysis
appears in Section 3.3 and the expected results from an implementation of the
circuit using the SPDZ protocol are in Section 3.4.

Throughout, we utilize FSPDZ (Functionality 4), which represents an ideal-
ized representation of the SPDZ protocol, akin to the functionality FMPC from
Section 2.1. Note that in the real protocol, FSPDZ is implemented itself by an of-
fline phase (essentially corresponding to our preprocessing-I) and an online phase
(corresponding to our preprocessing-II). We fold the SPDZ o✏ine phase into the
Initialize command of FSPDZ. In the SPDZ o✏ine phase we need to know the
maximum number of multiplications, random values and random bits required in
the online phase. In that phase the random shared bits and values are produced,
as well as the “Beaver Triples” for use in the multiplication gates performed in
the SPDZ online phase. In particular the consuming of shared random bits and
values results in no cost during the SPDZ online phase, with all consumption
costs being performed in the SPDZ o✏ine phase. The protocol, which utilizes
Somewhat Homomorphic Encryption to produce the shared random values/bits
and the Beaver multiplication triples, is given in [7].

As before, we use the notation [varid ] to represent the result stored in the
variable varid by the functionality. In particular we use the arithmetic short-
hands [z] = [x] + [y] and [z] = [x] · [y] to represent the result of calling the Add
and Multiply commands on the functionality FSPDZ.

3.2 The ⇧
o✏ine

SPDZ based Protocol

As remarked earlier Fo✏ine can be securely computed using any secure multi-
party protocol. This is advantageous since it means that future e�ciency im-
provements to concretely secure multi-party computation (with dishonest ma-
jority) will automatically make our protocol faster. However, currently the best
option is SPDZ. Specifically, it utilizes the fact that SPDZ can very e�ciently
generate coin tosses. This means that it is not necessary for the parties to input

12



the �i
w values, to multiply them together to obtain �w and to output the check

values (�w)2 � 1. Thus, this yields a significant e�ciency improvement. We now
describe the protocol which implements Fo✏ine in the FSPDZ-hybrid model

preprocessing-I:

1. Initialize the MPC Engine: Call Initialize on the functionality FSPDZ

with input p, a prime with p > 2k and with parameters

M = 13 ·G, B = W, R = 2 ·W · n, I = 2 ·G · n+W,

where G is the number of gates, n is the number of parties and W is the
number of input wires per party. In practice the term W in the calculation
of I needs only be an upper bound on the total number of input wires per
party in the circuit which will eventually be evaluated.

2. Generate wire masks: For every circuit wire w we need to generate a
sharing of the (secret) masking-values �w. Thus for all wires w the parties
execute the command RandomBit on the functionality FSPDZ, the output
is denoted by [�w]. The functionality FSPDZ guarantees that �w 2 {0, 1}.

3. Generate keys: For every wire w, each party i 2 [1, . . . , n] and for j 2
{0, 1}, the parties call Random on the functionality FSPDZ to obtain output
[kiw,j ]. The parties then call Output to open [kiw,j ] to party i for all j and
w. The vector of shares [kiw,j ]

n
i=1 we shall denote by [kw,j ].

preprocessing-II: (This protocol implements the computation gate table as it is
detailed in the BMR protocol. The correctness of this construction is explained
at the end of Appendix A.)

1. Output input wire values: For all wires w which are attached to party Pi

we execute the command Output on the functionality FSPDZ to open [�w]
to party i.

2. Output masks for circuit-output-wires: In order to reveal the real
values of the circuit-output-wires it is required to reveal their masking values.
That is, for every circuit-output-wire w, the parties execute the command
Output on the functionality FSPDZ for the stored value [�w].

3. Calculate garbled gates: This step is operated for each gate g in the
circuit in parallel. Specifically, let g be a gate whose input wires are a, b and
output wire is c. Do as follows:

(a) Calculate output indicators: This step calculates four indicators
[xa], [xb], [xc], [xd] whose values will be in {0, 1}. Each one of the garbled
labels Ag,Bg,Cg,Dg is a vector of n elements that hide either the vector
kc,0 = k1c,0, . . . , k

n
c,0 or kc,1 = k1c,1, . . . , k

n
c,1; which one it hides depends

on these indicators, i.e if xa = 0 then Ag hides kc,0 and if xa = 1
then Ag hides kc,1. Similarly, Bg depends on xb, Cg depends on xc

and Dc depends on xd. Each indicator is determined by some function
on [�a], [�b],[�c] and the truth table of the gate fg. Every indicator is
calculated slightly di↵erent, as follows (concrete examples are given after
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the preprocessing specification):

[xa] =

✓
fg([�a], [�b])

?

6= [�c]

◆
= (fg([�a], [�b])� [�c])

2

[xb] =

✓
fg([�a], [�b])

?

6= [�c]

◆
= (fg([�a], (1� [�b]))� [�c])

2

[xc] =

✓
fg([�a], [�b])

?

6= [�c]

◆
= (fg((1� [�a]), [�b])� [�c])

2

[xd] =

✓
fg([�a], [�b])

?

6= [�c]

◆
= (fg((1� [�a]), (1� [�b]))� [�c])

2

where the binary operator
?

6= is defined as [a]
?

6= [b] equals [0] if a = b,
and equals [1] if a 6= b. For the XOR function on a and b, for example,
the operator can be evaluated by computing [a] + [b]� 2 · [a] · [b]. Thus,
these can be computed using Add and Multiply.

(b) Assign the correct vector: As described above, we use the calculated
indicators to choose for every garbled label either kc,0 or kc,1. Calculate:

[vc,x
a

] = (1� [xa]) · [kc,0] + [xa] · [kc,1]

[vc,x
b

] = (1� [xb]) · [kc,0] + [xa] · [kc,1]

[vc,x
c

] = (1� [xc]) · [kc,0] + [xa] · [kc,1]

[vc,x
d

] = (1� [xd]) · [kc,0] + [xa] · [kc,1]

In each equation either the value kc,0 or the value kc,1 is taken, depending
on the corresponding indicator value. Once again, these can be computed
using Add and Multiply.

(c) Calculate garbled labels: Party i knows the value of kiw,b (for wire
w that enters gate g) for b 2 {0, 1}, and so can compute the 2 · n values
Fki

w,b

(0k1kg), . . . , Fki

w,b

(0knkg) and Fki

w,b

(1k1kg), . . . , Fki

w,b

(1knkg).
Party i inputs them by calling InputData on the functionality FSPDZ.
The resulting input pseudorandom vectors are denoted by

[F 0
ki

w,b

(g)] = [Fki

w,b

(0k1kg), . . . , Fki

w,b

(0knkg)]

[F 1
ki

w,b

(g)] = [Fki

w,b

(1k1kg), . . . , Fki

w,b

(1knkg)].

The parties now compute [Ag], [Bg], [Cg], [Dg], using Add, via

[Ag] =
Xn

i=1

⇣
[F 0

ki

a,0
(g)] + [F 0

ki

b,0
(g)]
⌘

+ [vc,x
a

]

[Bg] =
Xn

i=1

⇣
[F 1

ki

a,0
(g)] + [F 0

ki

b,1
(g)]
⌘

+ [vc,x
b

]

[Cg] =
Xn

i=1

⇣
[F 0

ki

a,1
(g)] + [F 1

ki

b,0
(g)]
⌘

+ [vc,x
c

]

[Dg] =
Xn

i=1

⇣
[F 1

ki

a,1
(g)] + [F 1

ki

b,1
(g)]
⌘

+ [vc,x
d

]

where every + operation is performed on vectors of n elements.
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4. Notify parties: Output construction-done.

The functions fg in Step 3a above depend on the specific gate being evaluated.
For example, on clear values we have,

– If fg = ^ (i.e. the AND function), �a = 1, �b = 1 and �c = 0 then xa =
((1^1)�0)2 = (1�0)2 = 1. Similarly xb = ((1^(1�1))�0)2 = (0�0)2 = 0,
xc = 0 and xd = 0. The parties can compute fg on shared values [x] and [y]
by computing fg([x], [y]) = [x] · [y].

– If fg = � (i.e. the XOR function), then xa = ((1� 1)� 0)2 = (0� 0)2 = 0,
xb = ((1 � (1 � 1)) � 0)2 = (1 � 0)2 = 1, xc = 1 and xd = 0. The parties
can compute fg on shared values [x] and [y] by computing fg([x], [y]) =
[x] + [y]� 2 · [x] · [y].

Below, we will show how [xa], [xb], [xc] and [xd] can be computed more e�ciently.

3.3 Circuit Complexity

In this section we analyze the complexity of the above circuit in terms of the
number of multiplication gates and its depth. We are highly concerned with
multiplication gates since, given the SPDZ shares [a] and [b] of the secrets a,
and b resp., an interaction between the parties is required to achieve a secret
sharing of the secret a · b. Achieving a secret sharing of a linear combination of
a and b (i.e. ↵ · a + � · b where ↵ and � are constants), however, can be done
locally and is thus considered negligible. We are interested in the depth of the
circuit because it gives a lower bound on the number of rounds of interaction
that our circuit requires (note that here, as before, we are concerned with the
depth in terms of multiplication gates).

Multiplication gates:We first analyze the number of multiplication operations
that are carried out per gate (i.e. in step 3) and later analyze the entire circuit.

– Multiplications per gate. We will follow the calculation that is done per
gate chronologically as it occurs in step 3 of preprocessing-II phase:
1. In order to calculate the indicators in step 3a it su�ces to compute one

multiplication and 4 squares. We can do this by altering the equations
a little. For example, for fg = AND, we calculate the indicators by
first computing [t] = [�a] · [�b] (this is the only multiplication) and then
[xa] = ([t] � [�c])2, [xb] = ([�a] � [t] � [�c])2, [xc] = ([�b] � [t] � [�c])2,
and [xd] = (1� [�a]� [�b] + [t]� [�c])2.

[xa] = ([t]� [�c])
2

[xb] = ([�a]� [t]� [�c])
2

[xc] = ([�b]� [t]� [�c])
2

[xd] = (1� [�a]� [�b] + [t]� [�c])
2

As another example, for fg = XOR, we first compute [t] = [�a]� [�b] =
[�a] + [�b] � 2 · [�a] · [�b] (this is the only multiplication), and then
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[xa] = ([t]� [�c])2, [xb] = (1� [�a]� [�b] + 2 · [t]� [�c])2, [xc] = [xb], and
[xd] = [xa].

[xa] = ([t]� [�c])
2

[xb] = (1� [�a]� [�b] + 2 · [t]� [�c])
2

[xc] = [xb]

[xd] = [xa]

Observe that in XOR gates only two squaring operations are needed.
2. To obtain the correct vector (in step 3b) which is used in each garbled

label, we carry out 8 multiplications. Note that in XOR gates only 4
multiplications are needed, because kc,x

c

= kc,x
b

and kc,x
d

= kc,x
a

.
Summing up, we have 4 squaring operations in addition to 9 multiplication
operations per AND gate and 2 squarings in addition to 5 multiplications
per XOR gate.

– Multiplications in the entire circuit. Denote the number of multipli-
cation operation per gate (i.e. 13 for AND and 7 for XOR) by c, we get G · c
multiplications for garbling all gates (where G is the number of gates in the
boolean circuit computing the functionality f). Besides garbling the gates
we have no other multiplication operations in the circuit. Thus we require
c ·G multiplications in total.

Depth of the circuit and round complexity: Each gate can be garbled by
a circuit of depth 3 (two levels are required for step 3a and another one for step
3b). Recall that additions are local operations only and thus we measure depth in
terms of multiplication gates only. Since all gates can be garbled in parallel this
implies an overall depth of three. (Of course in practice it may be more e�cient
to garble a set of gates at a time so as to maximize the use of bandwidth and
CPU resources.) Since the number of rounds of the SPDZ protocol is in the order
of the depth of the circuit, it follows that Fo✏ine can be securely computed in a
constant number of rounds.

Other Considerations: The overall cost of the pre-processing does not just de-
pend on the number of multiplications. Rather, the parties also need to produce
the random data via calls to Random and RandomBit to the functionality
FSPDZ.4 It is clear all of these can be executed in parallel. If W is the number
of wires in the circuit then the total number of calls to RandomBit is equal to
W , whereas the total number of calls to Random is 2 · n ·W .

Arithmetic vs Boolean Circuits: Our protocol will perform favourably for
functions which are reasonably represented as boolean circuit, but the low round
complexity may be outweighed by other factors when the function can be ex-
pressed much more succinctly using an arithmetic circuit, or other programatic

4 These Random calls are followed immediately with an Open to a party. However,
in SPDZ Random followed by Open has roughly the same cost as Random alone.
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representation as in [12]. In such cases, the performance would need to be tested
for the specific function.

3.4 Expected Runtimes

To estimate the running time of our protocol, we extrapolate from known public
data [8, 7]. The o✏ine phase of our protocol runs both the o✏ine and online
phases of the SPDZ protocol. The numbers below refer to the SPDZ o✏ine
phase, as described in [7], with covert security and a 20% probability of cheating,
using finite fields of size 128-bits, to obtain the following generation times (in
milli-seconds). As described in [7], comparable times are obtainable for running
in the fully malicious mode (but more memory is needed).

No. Parties Beaver Triple RandomBit Random Input
2 0.4 0.4 0.3 0.3
3 0.6 0.5 0.4 0.4
4 0.9 1.2 0.9 0.9

Table 1. SPDZ o✏ine generation times in milliseconds per operation

The implementation of the SPDZ online phase, described in both [7] and
[12], reports online throughputs of between 200,000 and 600,000 per second for
multiplication, depending on the system configuration. As remarked earlier the
online time of other operations is negligible and are therefore ignored.

To see what this would imply in practice consider the AES circuit described in
[17]; which has become the standard benchmarking case for secure computation
calculations. The basic AES circuit has around 33,000 gates and a similar number
of wires, including the key expansion within the circuit.5 Assuming the parties
share a XOR sharing of the AES key, (which adds an additional 2 · n · 128 gates
and wires to the circuit), the parameters for the Initialize call to the FSPDZ

functionality in the preprocessing-I protocol will be

M ⇡ 429, 000, B ⇡ 33, 000, R ⇡ 66, 000 · n, I ⇡ 66, 000 · n+ 128.

Using the above execution times for the SPDZ protocol we can then estimate the
time needed for the two parts of our processing step for the AES circuit. The
expected execution times, in seconds, are given in the following table. These
expected times, due to the methodology of our protocol, are likely to estimate
both the latency and throughput amortized over many executions.

No. Parties preprocessing-I preprocessing-II

2 264 0.7–2.0
3 432 0.7–2.0
4 901 0.7–2.0

5 Note that unlike [17] and other Yao based techniques we cannot process XOR gates
for free. On the other hand we are not restricted to only two parties.
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The execution of the online phase of our protocol, when the parties are given
their inputs and actually want to compute the function, is very e�cient: all
that is needed is the evaluation of a garbled circuit based on the data obtained
in the o✏ine stage. Specifically, for each gate each party needs to process two
input wires, and for each wire it needs to expand n seeds to a length which is
n times their original length (where n denotes the number of parties). Namely,
for each gate each party needs to compute a pseudorandom function 2n2 times
(more specifically, it needs to run 2n key schedulings, and use each key for n
encryptions). We examined the cost of implementing these operations for an
AES circuit of 33,000 gates when the pseudorandom function is computed using
the AES-NI instruction set. The run times for n = 2, 3, 4 parties were 6.35msec,
9.88msec and 15msec, respectively, for C code compiled using the gcc compiler on
a 2.9GHZ Xeon machine. The actual run time, including all non-cryptographic
operations, should be higher, but of the same order.

Our run-times estimates compare favourably to several other results on im-
plementing secure computation of AES in a multiparty setting:

– In [6] an actively secure computation of AES using SPDZ took an o✏ine
time of over five minutes per AES block, with an online time of around a
quarter of a second; that computation used a security parameter of 64 as
opposed to our estimates using a security parameter of 128.

– In [12] another experiment was shown which can achieve a latency of 50
milliseconds in the online phase for AES (but no o✏ine times are given).

– In [16] the authors report on a two-party MPC evaluation of the AES circuit
using the Tiny-OT protocol; they obtain for 80 bits of security an amortized
o✏ine time of nearly three seconds per AES block, and an amortized online
time of 30 milliseconds; but the reported non-amortized latency is much
worse. Furthermore, this implementation is limited to the case of two parties,
whereas we obtain security for multiple parties.

Most importantly, all of the above experiments were carried out in a LAN setting
where communication latency is very small. However, in other settings where
parties are not connect by very fast connections, the e↵ect of the number of
rounds on the protocol will be extremely significant. For example, in [6], an
arithmetic circuit for AES is constructed of depth 120, and this is then reduced
to depth 50 using a bit decomposition technique. Note that if parties are in
separate geographical locations, then this number of rounds will very quickly
dominate the running time. For example, the latency on Amazon EC2 between
Virginia and Ireland is 75ms. For a circuit depth of 50, and even assuming just
a single round per level, the running-time cannot be less than 3750 milliseconds
(even if computation takes zero time). In contrast, our online phase has just 2
rounds of communication and so will take in the range of 150 milliseconds. We
stress that even on a much faster network with latency of just 10ms, protocols
with 50 rounds of communication will still be slow.
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A The BMR Protocol of [1]

In this appendix we outline the basis of our protocol, which is the BMR protocol
of Beaver, Micali and Rogaway for semi-honest adversaries. (BMR also have a
version for malicious adversaries. However, it requires an honest majority and is
also not concretely e�cient.) The protocol is comprised of an o✏ine-phase and
an online-phase. During the o✏ine-phase the garbled circuit is created by the
players, while in the online-phase a matching set of garbled inputs is exchanged
between the players and each of them evaluates the garbled circuit locally. The
protocol is based on the following data items:

Seeds and superseeds: Two random seeds are associated with each wire in
the circuit by each player. We denote the 0-seed and 1-seed that are chosen by
player Pi (where 1  i  n) for wire w as siw,0 and siw,1 (where 0  w < W
and W is the number of wires in the circuit and siw,j 2 {0, 1}). During the
garbling process the players produce two superseeds for each wire, where the
0-superseed and 1-superseed for wire w are a simple concatenation of the 0-
seeds and 1-seeds chosen by all the players, namely, Sw,0 = s1w,0k · · · ksnw,0 and
Sw,1 = s1w,1k · · · ksnw,1 where k denotes concatenation. Note that Sw,j 2 {0, 1}L
where L = n · .
Garbling wire values: For each gate g which calculates the function fg (where
fg : {0, 1} ⇥ {0, 1} ! {0, 1}), the garbled gate of g is computed such that the
superseeds associated with the output wire are encrypted (via a simple XOR)
using the superseeds associated with the input wires, according to the truth table
of fg. Specifically, a superseed Sw,0 = s1w,0k · · · ksnw,0 is used to encrypt a value
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M of length L by computing M
Ln

i=1 G(siw,0), where G is a pseudo-random
generator stretching a seed of length  to an output of length L. This means
that every one of the seeds that make up the superseed must be known in order
to learn the mask and decrypt.

Masking values: Using random seeds instead of the original 0/1 values does
not hide the original value if it is known that the first seed corresponds to 0 and
the second seed to 1. Therefore, an unknown random masking bit, denoted by
�w, is assigned to wire w (for 0  w < W ). These masking bits remain unknown
to the players during the entire protocol, thereby preventing them from knowing
the real values ⇢w that pass through the wires. The values that the players do
know are called the external values ⇤w. An external value is defined to be the
exclusive-or of the real value and the masking value; i.e., ⇤w = ⇢w � �w. When
evaluating the garbled circuit the players only see the external values of the
wires, which are random bits that tell nothing about the real values, unless they
know the masking values. We remark that each party Pi is given the masking
value associated with its input. Thus, it can compute the external value itself
(based on its actual input) and can send it to all other parties.

BMR garbled gates and circuit: We can now define the BMR garbled cir-
cuit, which consists of the set of garbled gates, where a garbled gate is defined
via a functionality that maps inputs to outputs. Let g be a gate with input
wires a, b and output wire c. Each party Pi (for 1  i  n) inputs the seeds
sia,0, s

i
a,1, s

i
b,0, s

i
b,1, s

i
c,0, s

i
c,1. Thus, the superseeds produced are Sa,0, Sa,1, Sb,0,

Sb,1, Sc,0, Sc,1, where each superseed is given by S↵,� = s1↵,�k · · · ksn↵,� . In addi-
tion, Pi also inputs the output of a pseudo-random generator G applied on each
of these seeds, and its shares of the masking bits, i.e. �i

a,�
i
b,�

i
c.

The output is the garbled gate of g which comprised of a table of four ci-
phertexts, each of them encrypting either Sc,0 or Sc,1. The property of the gate
construction is that given one superseed for a and one superseed for b it is pos-
sible to to decrypt exactly one ciphertext, and reveal the appropriate superseed
for c (based on the values on the input wires and the gate type). The func-
tionality, garble-gate-BMR, for garbling a single gate, is formally described in
Functionality 5.

The BMR Online Phase: In the online-phase the players only have to obtain
one superseed for every circuit-input wire, and then every player can evaluate
the circuit on his own, without interaction with the rest of the players. Formally,
the protocol that implements the online phase is given by Protocol 2.
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Functionality 5 (garble-gate-BMR)

Let  denote the security parameter, and let G : {0, 1} ! {0, 1}2n be a
pseudo-random generator. Denote the first L = n ·  bits of the output of G
by G

1, and the last n bits of the output of G by G

2.
The garbling of gate g computing f

g

: {0, 1} ⇥ {0, 1} ! {0, 1} with inputs
wires a, b and output wire c is defined as follows:

Inputs: For each gate the inputs are given by

1. Seeds: s

1
a,0, . . . , s

n

a,0, s

1
a,1, . . . , s

n

a,1, s

1
b,0, . . . , s

n

b,0, s

1
b,1, . . . , s

n

b,1,
s

1
c,0, . . . , s

n

c,0, s
1
c,1, . . . , s

n

c,1 where each seed is in {0, 1}.
2. PRG output: The output of G applied to each of the seeds above, such

that the first n · bits of the output are denoted by G

1 and the other n ·
bits by G

2.
3. Masking bits. Bits �

a

, �
b

and �

c

.

Outputs: The garbled gate of g is the following four ciphertexts A
g

, B

g

, C

g

, D

g

(in this order that is determined by the external values):

A

g

= G

1(s1
a,0)� · · ·�G

1(sn
a,0)�G

1(s1
b,0)� · · ·�G

1(sn
b,0)

�
(

S

c,0 if f
g

(�
a

,�

b

) = �

c

S

c,1 otherwise

B

g

= G

2(s1
a,0)� · · ·�G

2(sn
a,0)�G

1(s1
b,1)� · · ·�G

1(sn
b,1)

�
(

S

c,0 if f
g

(�
a

, �̄

b

) = �

c

S

c,1 otherwise

C

g

= G

1(s1
a,1)� · · ·�G

1(sn
a,1)�G

2(s1
b,0)� · · ·�G

2(sn
b,0)

�
(

S

c,0 if f
g

(�̄
a

,�

b

) = �

c

S

c,1 otherwise

D

g

= G

2(s1
a,1)� · · ·�G

2(sn
a,1)�G

2(s1
b,1)� · · ·�G

2(sn
b,1)

�
(

S

c,0 if f
g

(�̄
a

, �̄

b

) = �

c

S

c,1 otherwise
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Protocol 2 (Protocol BMR-online-phase)

Step 1 – send values:
1. Every player P

i

broadcasts the external value values on the wires
associated with its input. At the end of this step the players know
the external value ⇤

w

for every circuit-input wire w. (Recall that P
i

knows �
w

and so can compute ⇤

w

based on its input.)
2. Every player P

i

broadcasts one seed for each circuit-input wire,
namely, the ⇤

w

-seed. At the end of this step the players know the
⇤

w

-superseed for every circuit-input wire.
Step 1 – evaluate circuit: The players evaluate the circuit from bottom

up, such that to obtain the superseed of an output wire of the gate, use
A

g

if the external values of g’s input wires are ⇤

a

,⇤

b

= (0, 0), use B

g

if
⇤

a

,⇤

b

= (0, 1), C
g

if ⇤
a

,⇤

b

= (1, 0) and D

g

if ⇤
a

,⇤

b

= (1, 1) where a, b

are the input wires. (see the original paper for more details).

Correctness: We explain now why the conditions for masking Sc,0 and Sc,1 are
correct. The external values ⇤a,⇤b indicate to the parties which ciphertext to
decrypt. Specifically, the parties decrypt Ag if ⇤a = ⇤b = 0, they decrypt Bg if
⇤a = 0 and ⇤b = 1, they decrypt Cg if ⇤a = 1 and ⇤b = 0, and they decrypt Dg

if ⇤a = ⇤b = 1.
We need to show that given Sa,⇤

a

and Sb,⇤
b

, the parties obtain Sc,⇤
c

. Con-
sider the case that ⇤a = ⇤b = 0 (note that ⇤a = 0 means that �a = ⇢a, and
⇤a = 1 means that �a 6= ⇢a, where ⇢a is the real value). Since ⇢a = �a and
⇢b = �b we have that fg(�a,�b) = fg(⇢a, ⇢b). If fg(�a,�b) = �c then by def-
inition fg(⇢a, ⇢b) = ⇢c, and so we have �c = ⇢c and thus ⇤c = 0. Thus, the
parties obtain Sc,0 = Sc,⇤

c

. In contrast, if fg(�a,�b) 6= �c then by definition
fg(⇢a, ⇢b) 6= ⇢c, and so we have �c = ⇢̄c and thus ⇤c = 1. A similar analysis
show that the correct values are encrypted for all other combinations of ⇤a,⇤b.

B A Generic Protocol to Implement F
o✏ine

In this Appendix we give a generic protocol ⇧o✏ine which implements Fo✏ine

using any protocol which implements the generic MPC functionality FMPC. The
protocol is very similar to the protocol in the main body which is based on
the SPDZ protocol, however this generic functionality requires more rounds of
communication (but still requires constant rounds). Phase Two is implemented
exactly as in Section 3, so the only change we need is to alter the implementation
of Phase One; which is implemented as follows:

1. Initialize the MPC Engine: Call Initialize on the functionality FMPC

with input p, a prime with 2 < p < 2+1.
2. Generate wire masks: For every circuit wire w we need to generate a

sharing of the (secret) masking-values �w. Thus for all wires w the players
execute the following commands
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– Player i calls InputData on the functionality FMPC for a random value
�i
w of his choosing.

– The players compute

[µw] =
nY

i=1

[�i
w],

[�w] =
[µw] + 1

2
,

[⌧w] = [µw] · [µw]� 1.

– The players open [⌧w] and if ⌧w 6= 0 for any wire w they abort.
3. Generate garbled wire values: For every wire w, each party i 2 [1, . . . , n]

and for j 2 {0, 1}, player i generates a random value kiw,j 2 Fp and call
InputData on the functionality FMPC so as to obtain [kiw,j ]. The vector of
shares [kiw,j ]

n
i=1 we shall denote by [kw,j ].

C Security Proof

The security proof is demonstrated by two steps. In the first step we reduce se-
curity in the semi-honest case, i.e. for an adversary A that does not deviate from
the described protocol and only tries to learn information from the transcript, to
the security of the original BMR protocol. In the second step we show that our
protocol remains secure even if A is malicious, i.e. is allowed to deviate from the
protocol. This second step is performed by giving a reduction from the malicious
to the semi-honest model. In both steps the adversary A is assumed to corrupt
parties in the beginning of the execution of our protocol.

To be able to follow the proof smoothly we first present some conventions
and notations. In both the original BMR protocol and our protocol the players
obtain a garbled circuit and a matched set of garbled inputs, they are then
able to evaluate the circuit without further interaction. The players evaluate the
circuit from bottom up until they reach the circuit-output wires, i.e. the input
wires are said to be at the “bottom” of the circuit, whilst the output wires are
at the “top”. In their evaluation the players use the garbled gate of gate g to
reveal a single external value for wire c (i.e. ⇤c, where c is g’s output wire)
together with an appropriate key-vector kc,⇤

c

= k1c,⇤
c

, . . . , knc,⇤
c

. There is only
one entry in the garbled gate that can be used to reveal the pair (⇤c,kc,⇤

c

);
specifically if g’s input wires are a and b then the (2⇤a + ⇤b)-th entry in the
table of the garbled gate of g is used (where the entries indices are 0 for Ag, 1
for Bg, 2 for Cg and 3 for Dg). For each gate we call the garbled gate’s entry
for which the players evaluate that gate as the active entry and the other three
entries as inactive entries. Similarly we use the term active signal to denote the
value ⇤c that is revealed for some wire c, and the term active path for the set
of active signals that have been revealed to the players during the evaluation of
the circuit. Recall that in the online phase of our protocol the players exchange
the active signal of all the circuit-input wires. We denote by I the set of indices
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of the players that are under the control of the adversary A, and by xI their
inputs to the functionality (note that in the malicious case these inputs might
be di↵erent from the inputs that the players have been given originally). In the
same manner, J is the set of indices of the honest-parties and xJ their inputs
such that |I [ J | = n and I \ J = ?. We denote by W , Win and Wout the sets
of all wires, the set of circuit-input wires (a.k.a. attached wires) and the set of
circuit-output wires of the circuit C. We denote the set of gates in the circuit as
G = {g1, . . . , g|G|}. Recall that  is the security parameter.

C.1 Security in the semi-honest model

View 1 (The view REAL
BMR
A )

For every i 2 I the adversary sees the following:

1. Masking shares: Shares of the masking values for all wires W , i.e. {�i

w

2
{0, 1} | w 2W}.

2. Masking values for attached wires: The ` masking values �
w

of P
i

’s
attached wires w are revealed in the clear.

3. Seeds: Player P
i

’s seed values {si
w,0, s

i

w,1 2 {0, 1} | w 2W}.
4. Seed extensions: For each seed s

i

w,b

player P

i

sees two pseudo-random
extensions G1(si

w,b

), G2(si
w,b

) 2 {0, 1}n.

In addition the adversary sees:

1. Masking values for output wires: The masking values {�
w

2 {0, 1} |
w 2W

out

}.
2. Garbled circuit: For every gate g the garbled table {A

g

, B

g

, C

g

, D

g

|
g 2 G} where A

g

, B

g

, C

g

, D

g

2 {0, 1}n.
3. Inputs: The input values x̄

I

.
4. Active path: For every wire w in the circuit one active signal together

with its matched superseed, i.e. (⇤
w

, S

w,⇤

w

), using one entry of the garbled
gate. The rest of the values (i.e. the inactive entries) are indistinguishable
from random.

The idea is to show that there exist a probabilistic polynomial-time proce-
dure, P, whose input is a view sampled from the view distribution of a semi-
honest adversary involved in a real execution of the original BMR protocol6,
namely REALBMR

A in View 1; and its output is a view from the view distribution
of a semi honest adversary involved in a real execution of our protocol, namely
REALOur

A in View 2. Formally, the procedure is defined as

P : {REAL
BMR
A }x̄ ! {REAL

Our
A }x̄

6
In this section we actually mean to the execution in the hybrid model where the parties have
access to the underlying MPC functionality, we call it as real execution for convenience.
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where x̄ = x1, . . . , xn is the players’ input to the functionality.
In this section we present the procedure P and show that {P(REALBMR

A )}x̄
and {REALOur

A }x̄ are indistinguishable. We then show that the existence of a
simulator, SBMR, for A’s view in the execution of the original BMR protocol
implies the existence of a simulator SOUR for A’s view in the execution of our
protocol. In the following we first describe REALBMR

A (View 1) and REALOur
A (View

2), then we describe the procedure P and prove the mentioned claims.

View 2 (The view REAL
Our
A )

For every i 2 I the adversary sees the following:

1. Masking values for attached wires: The ` masking values �
w

of P
i

’s
attached wires w are revealed in the clear.

2. Keys. Player P
i

’s random keys {ki

w,0, k
i

w,1 2 F
p

| w 2W}.
3. Keys extensions. For every key k

i

w,b

, and for every gate g which wire w

enters into, the values
n

F

k

i

w,b

(0k1kg), . . . , F
k

i

w,b

(0knkg),

F

k

i

w,b

(1k1kg), . . . , F
k

i

w,b

(1knkg) | w 2W

o

.

In addition the adversary sees:

1. Masking values for output wires: The masking values {�
w

2 {0, 1} |
w 2W

out

}.
2. Construction done. The message construction-done broadcasted by the

functionality.
3. Inputs. The input values x̄

I

.
4. Open message The message open.
5. Garbled circuit. For every gate g {A

g

, B

g

, C

g

, D

g

| g 2 G} where
A

g

, B

g

, C

g

, D

g

2 (F
p

)n.
6. Active path. For every wire w in the circuit one active signal together

with its matched key-vector, i.e. (⇤
w

,k
w,⇤

w

), using one entry of the gar-
bled gate.

We are ready to describe the procedure P (Procedure 3), which is given a
view REALBMR

A that is sampled from the distribution of the adversary’s views
under the input x̄ of the players in the original BMR protocol, and outputs a
view from the distribution of the adversary’s views in our protocol (i.e. REALOur

A ).
We will then show that the resulting distribution of views is indistinguishable
from REALOur

A for every x̄. Since P sees the garbled circuit and the matched set
of (garbled) inputs from all players, it can evaluate the circuit by itself and
determine the active path and the output ȳI , however, P does not knows x̄J
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(it only knows x̄I) and thus cannot construct a garbled circuit for our protocol
from scratch, it must instead use the information that can be extracted from it’s
input view.

Procedure 3 (The Procedure P)

Input. A view v taken from distribution VIEW
BMR
A under the input x̄.

Output. A view v

0 conforming to the message flow in VIEW
Our
A .

The procedure proceeds as follows:

1. Take the masking values for the attached wires and for the output wires
W

out

to be the same as in v.
2. Set x

I

to be the same as in v.
3. To construct the garbled circuit:

(a) Choose a random set of keys {ki

w,b

| w 2 W, b 2 {0, 1}, i 2 I [ J} for
the players, and for each key compute the appropriate 2n PRF values.

(b) Choose a random set of masking values for all wires that are not
attached with the players P

I

and are not in W

out

.
(c) For every gate g in the circuit, with input wires a, b and output wire c,

the algorithm sets the the garbled entries (except one as described im-
mediately) to be random values from (F

p

)n whilst for the (2 ·⇤
a

+⇤

b

)-
th entry the algorithm instead conceals the ⇤

c

key-vector (in contrast
to the real construction in which the key-vector that the entry con-
ceals depends on the masking values of a, b and c). That is, when the
algorithm construct the garbled gates it ignores the masking values
that it chose in the previous step. For example, take ⇤

a

= 1,⇤
b

= 0
and ⇤

c

= 1 then the entry by which the players evaluate the gate is
the 2 · ⇤

a

+ ⇤

b

= 2 (i.e. the third) entry which is C

g

. Thus P makes
C

g

to encrypt the 1-key vector, i.e. k
c,1 by:

A

j

g

R F
p

B

j

g

R F
p

C

j

g

=

 

n

X

i=1

F

k

i

a,1
(0kjkg) + F

k

i

b,0
(1kjkg)

!

+ k

j

c,1

D

j

g

R F
p

for j = 1, . . . , n as described in Functionality 3. Note that we explicitly
conceal kj

c,1 for every element in k
c,1 because we already know from

the active path of v that the external value of wire c is ⇤
c

= 1.
4. Add the messages construction-done and open to the obvious location in

the resulting view.

Claim 4 Given that the BMR protocol is secure in the semi-honest model, our
protocol is secure in the semi-honest model as well.
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Proof. From the security of the BMR protocol we know that

{SBMR(1
, I, xI , yI)}x̄

c⌘ {REAL
BMR
A }x̄

thus, for every PPT algorithm, and specifically for algorithm P it holds that

{P(SBMR(1
, I, xI , yI))}x̄

c⌘ {P(REAL
BMR
A )}x̄

then, if the following computational indistinguishability holds (proven in claim
5)

{REAL
Our
A }x̄

c⌘ {P(REAL
BMR
A )}x̄ (1)

then by transitivity of indistinguishability, it follows that

{P(SBMR(1
, I, xI , yI))}x̄

c⌘ {P(REALBMR
A )}x̄

c⌘ {REAL
Our
A }x̄

) {P(SBMR(1
, I, xI , yI))}x̄

c⌘ {REAL
Our
A }x̄

hence, P � SBMR is a good simulator for the view of the adversary in the semi
honest model. ⌅

In the following we prove Equation 1:

Claim 5 The probability ensemble of the view of the adversary in the real exe-
cution of our protocol and the probability ensemble of the view of the adversary
resulting by the procedure P, both indexed by the players’ inputs to the function-
ality x̄, are computationally indistinguishable. That is:

{REAL
Our
A }x̄

c⌘ {P(REAL
BMR
A )}x̄

Proof. Remember that in the procedure P we don’t have any information about
the masking values {�w | w 2 W} (except of those which are known to the
adversary), therefore we couldn’t compute the indicators xA, xB , xC , xD (as de-
scribed in section 3.2) and thus couldn’t tell which key vector is encrypted in
each entry, that is, we couldn’t fill out correctly the four garbled gate’s entries
A,B,C,D. On the other hand, in the procedure P we do know the set of external
values {exvw | w 2 W}, thus, we know for sure that for every gate g, with input
wires a, b and output wire c, the key vector encrypted in the 2⇤a + ⇤b-th entry
of the garbled table of gate g is the ⇤c -th key vector kc,⇤

c

.
Let us denote by {REALOur

A }f,x̄,ki

w,�

,�j the view of the adversary in the execu-

tion of our protocol (which computes the functionality f) with players’ inputs
x̄ when using the keys {kiw,� | 1  i  n,w 2 W,� 2 {0, 1}} and the masking

values {�j | j 2 W}. Similarly, denote by {P(REALBMR
A )}f,x̄,ki

w,�

,�j the view of

the adversary in the output of the procedure P.
Given that

{REAL
Our
A }f,x̄,ki

w,�

,�j

c⌘ {P(REAL
BMR
A )}f,x̄,ki

w,�

,�j (2)
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are computationally indistinguishable (i.e. under the same functionality, players’
inputs, keys and masking values) it follows that

{REAL
Our
A }x̄

c⌘ {P(REAL
BMR
A )}x̄

since the functionality, keys and masking values are taken from exactly the same
distributions in both cases. In the following (claim 6) we prove equation 2.

Claim 6 Fix a functionality f , players’ inputs x̄, keys {kiw,� | 1  i  n,w 2
W,� 2 {0, 1}} and masking values {�j | j 2 W} used in both the execution of
our protocol and the procedure P, then equation (2) holds; that is

{REAL
Our
A }f,x̄,ki

w,�

,�j

c⌘ {P(REAL
BMR
A )}f,x̄,ki

w,�

,�j

Proof. Note that the di↵erence between {REALOur
A }f,x̄,ki

w,�

,�j and {P(REALBMR
A )}f,x̄,ki

w,�

,�j

are the values of the garbled gates’ entries which are not in the active path, that
is, in {REALOur

A }f,x̄,ki

w,�

,�j these values are computed as described in section 3.2

while in the procedure {P(REALBMR
A )}f,x̄,ki

w,�

,�j they are just random values from

(Fp)n.
Let D be a polynomial time distinguisher such that

|Pr[D({REAL
Our
A }f,x̄,ki

w,�

,�j) = 1]� Pr[D({P(REAL
BMR
A )}f,x̄,ki

w,�

,�j) = 1]| = "()

and assume by contradiction that " is some non-negligible function in .
Let C be the boolean circuit that computes the functionality f . Consider C

as a set of layers of gates, where the first layer (indexed as layer 1) consists of all
gates whose both inputs wires are circuit-input wires, the second layer consists of
the gates whose input wires are either from the circuit-input wires or the output
wire of some gates from layer 1, and so on. Each gate belongs to the maximal
layer possible (e.g. a gate whose input wires are the output wires of two gates,
one from layer d1 and the other from layer d2, belongs to layer max(d1, d2)+ 1).
We denote the depth of the circuit C (i.e. the maximal layer index) by d.

We define the hybrid Ht as the view in which the gates which belong to
layers 1, . . . , t are computed as in the procedure P (i.e. the inactive entries are
just random elements from (Fp)n) and the gates which belong to the layers
t+1, . . . , d are computed as described in our protocol (section 3.2). Observe that
H0 is distributed exactly as the view of the adversary in {REALOur

A }f,x̄,ki

w,�

,�j and

Hd is distributed exactly as the view of the adversary in {P(REALBMR
A )}f,x̄,ki

w,�

,�j .

Thus, by hybrid argument it follows that there exists an integer 0  z < d � 1
and a distinguisher D0 who can distinguish between the two distributions Hz

and Hz+1 with non-negligible probability "0.
Let us take a closer look at the hybrids Hz and Hz+1: Let g be a gate from

layer z + 1 with input wires a, b and output wire c.
If the view is taken from Hz+1 then the garbled table Ag, Bg, Cg, Dg are com-
puted as described in the procedure P, that is, the external values ⇤a,⇤b,⇤c

are known and thus the key kc,⇤
c

is encrypted using keys ka,⇤
a

and kb,⇤
b

in the
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2⇤a + ⇤b-th entry (the active entry) while the other three (inactive) entries are
independent of ka,⇤

a

, kb,⇤
b

, ka,⇤̄
a

and kb,⇤̄
b

(because P chooses them at random
from (Fp)n).
If the view is taken from Hz then the garbled table of g is computed correctly
for all the four entries. Let g̃a be a gate whose output wire is a (which is an input
wire to gate g); note that by the definitions of the layers g̃a must reside at layer
no larger than z and thus there is exactly one entry (the active entry) in the
garbled table of g̃a which encrypts ka,⇤̄

a

while the other three (inactive) entries
are random values from (Fp)n, therefore reveal no information about ka,⇤

a

, and
more important, no information about ka,⇤̄

a

. The same observation holds for the
gate g̃b whose output wire is b. We get that in the computation of the garbled
table of gate g (recall that it is in layer z + 1 and we are currently looking at
hybrid Hz) there is exactly one entry (i.e. the active entry) which depends on
both ka,⇤

a

and kb,⇤
b

while the other three (inactive) entries are depend on at
least one of ka,⇤̄

a

and kb,⇤̄
b

.
Since the distinguisher D0 has no prior information at all about ka,⇤̄

a

and
kb,⇤̄

b

(i.e. information that achieved from other source but the garbled table of
gate g itself in Hz), whenever a computation of F using a key from the vectors
ka,⇤̄

a

or kb,⇤̄
b

is required in order to compute the inactive entries of gate g (in

Hz), we could use some other key k̃ instead. Moreover, we could use F without
even know k̃ at all, e.g. when working with an oracle.

In the following we exploit the above observation. Let us first define pseudo

random function under multiple keys:

Definition 1. Let F : {0, 1}n ⇥ {0, 1}n ! {0, 1}n be an e�cient, length pre-
serving, keyed function. F is a pseudo random function under multiple keys if for
all polynomial time distinguishers D, there is a negligible function neg such that:

|Pr[DF
k̄

(·)(1n) = 1]� Pr[Df̄(·)(1n) = 1]|  neg(n)

where Fk̄ = Fk1 , . . . , Fk
m(n)

are the pseudo random function F keyed with poly-

nomial number of randomly chosen keys k1, . . . , km(n) and f̄ = f1, . . . , fm(n) are
m(n) random functions {0, 1}n ! {0, 1}n. The probability in both cases is taken
over the randomness of D as well.

It is easy to see (by a hybrid argument) that if F is a pseudo random function
then it is a pseudo random function under multiple keys, thus, since the function
F used in our protocol is a PRF then for every polynomial time distinguisher
D̃, every positive polynomial p and for all su�ciently large s:

|Pr[D̃F
k̄

(·)(1) = 1]� Pr[D̃f̄(·)(1) = 1]|  1

p()
(3)

We are now present a reduction from the indistinguishability betweenHz and
Hz+1 to the indistinguishability of the pseudorandom function F under multiple
keys. Given the polynomial time distinguisher D0 who distinguishes between Hz

and Hz+1 with non negligible probability "0, we construct a polynomial time
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distinguisher D00 who distinguishes between F under multiple keys and a set of
truly random functions (and thus contradicting the pseudorandomness of F ).
The distinguisher D00 has an access to O = O1, . . . ,Om (which is either a PRF
under multiple keys or a set of truly random functions), D00 act as follows:

1. Chooses keys and masking values for all players and wires, i.e. {kiw,b | w 2
W, b 2 {0, 1}, i 2 {1, . . . , n}} and {�w | w 2 W}.

2. Constructs the z bottom layers of the circuit C as described in the procedure
P, i.e. only the active entry is calculated correctly, the rest three entries are
taken to be random from (Fp)n.

3. Let w1, . . . , wm be the set of wires that enters to the gates in layer z + 1,
such that for every wi (1  i  m) we have the active signal ⇤w

i

along with
the key kw

i

,⇤
w

i

and the inactive signal ⇤w
i

such that the distinguisher has
no information about kw

i

,⇤
w

i

. The distinguisher D00 computes the garbled

tables of the gates which belong to layer z + 1 as described in our protocol
with the following exception:
– Whenever a result of F applied to the key kw

i

,⇤
w

i

is required, it computes
it correctly as in our protocol.

– Whenever a result of F applied to the key kw
i

,⇤
w

i

is required, the dis-

tinguisher D00 query the oracle Oi instead.
4. Completes the computation of the garbled circuit, i.e. the garbled tables of

the gates which belong to layers z + 2, . . . , d, correctly, as in our protocol.
5. Hands the resulting view to D0 and outputs whatever it outputs.

Observe that if O = Fk̄ then the view that D00 hands to D0 is distributed
identically to Hz while if O = f̄ then the view that D00 hands to D0 is distributed
identically to Hz+1. Thus:

|Pr[D00F
k̄

(·)(1) = 1]� Pr[D00f̄(·)(1) = 1]| =
|Pr[D0(Hz) = 1]� Pr[D0(Hz+1) = 1]| = "

where " is a non-negligible probability (as mentioned above), in contradiction to
the pseudo-randomness of F . We conclude that the assumption of the existence
of D0 is incorrect and thus:

{REAL
Our
A }f,x̄,ki

w,�

,�j

c⌘ {P(REAL
BMR
A )}f,x̄,ki

w,�

,�j

⌅

C.2 Security in the malicious model

In our protocol there are exactly two points in which a maliciously corrupted
party might deviate from the protocol:

– A corrupted party Pc, to whom the circuit input wire w is attached, might
cheat in the online phase by sending the external value ⇤0

w 6= �w � ⇢w, i.e.
Pc sends ⇤w.
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– A corrupted party might cheat in the o✏ine phase by input a false value as
one (or more) of the PRF results of its keys.

It is clear that the first kind of behavior has the same e↵ect as if the adversary
inputs to the functionality the value ⇢̄w instead of ⇢w, since ⇤̄w = �w � ⇢̄w, and
thus, this behavior is permitted to a malicious adversary.

We break the presentation of the security in the malicious case into two steps:
first we show that the adversary cannot break the correctness of the protocol with
more than negligible probability, and then we use that result (of correctness) in
order to show that the joint distributions of the output of the parties in the ideal
and real worlds are indistinguishable.

Correctness. Let us denote the event in which a corrupted party cheats by
inputting a false PRF result in the o✏ine phase as cheat. In the following we
prove the following claim:

Claim 7 A malicious adversary cannot break the correctness property of our
protocol except with a negligible probability. Formally, denote the output of the
honest parties in our protocol as ⇧J

SFE and their output when computed by the
functionality f as yJ , for every positive polynomial p and for su�ciently large 

Pr[⇧J
SFE 6= yJ ^⇧J

SFE 6= ? | cheat]  1

p()

Proof. To harm the correctness property of the protocol, the adversary has to
provide to the o✏ine phase incorrect results of F applied on its keys, such that
the resulted garbled circuit will cause the honest party to output some value
that is di↵erent from yJ . Let GCSH be the garbled circuit resulted by the o✏ine
phase in the semi-honest model, i.e. when the adversary provides the correct
results of F , and let GCM be the garbled circuit resulted in the malicious model
(such that in both cases the underlying MPC, the adversary and the parties have
the same random tape).

Observe that if the adversary succeeds in breaking the correctness then there
must be at least one wire c, such that the gate g has input wires a, b and output
wire c, and at least one honest party Pj such that in GCSH the active signal
that Pj sees is (v, kjc,v) (where v = ⇤c is the external value) and in GCM the

active signal is (v̄, kjc,v̄).
In the following analysis we let the adversary more power than it has in

reality and assume that it can predict, even before supplying its PRF results
(i.e. in the o✏ine phase), which entries are going to be evaluated in the online
phase (i.e. it knows the active path). For example, it knows that for some gate
g with input wires a, b and output wire c, ⇤a = ⇤b = 0 and thus the active
entry for gate g is Ag. In addition, observe that the success probability of the
adversary (of breaking the correctness property) is independent for every gate,
thus it is su�cient to calculate the success probability of the adversary for a
single gate and then multiply the result by the number of gates in the circuit.
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So we first analyze the success probability of the adversary to break the
correctness of the gate g with input wires a, b and output wire c. Assume, without
loss of generality, that the active entry of gate g is Ag which is a vector of n
elements from Fp, such that the j-th element of Ag is calculated (as described
in functionality 3) by

Aj
g =

 
nX

i=1

Fki

a,0
(0kj kg) + Fki

b,0
(0kj kg)

!
+ kjc,v (4)

For simplicity define

Xj , FkI

a,0
(0kj kg) + FkI

b,0
(0kj kg) =

X

i2I

�
Fki

a,0
(0kj kg) + Fki

b,0
(0kj kg)

�

Y j , FkJ

a,0
(0kj kg) + FkJ

a,0
(0kj kg) =

X

i2J

�
Fki

a,0
(0kj kg) + Fki

b,0
(0kj kg)

�

i.e. Xj is the sum of the PRF results that the adversary provides and Y j is the
sum of the PRF results that the honest player provides. Thus, rewriting equation
(4) we obtain

Aj
g = Xj + Y j + kjc,v

In order to break the correctness of gate g, the adversary has to flip the active
signal for at least one j 2 J (i.e. for at least one honest party), that is, the
adversary has to provide false PRF results X̃j such that

Ãj
g = X̃j + Y j + kjc,v̄

Let �j be the di↵erence between the two hidden keys, i.e. �j = kjc,v �kjc,v̄, then

it follows that kjc,v̄ = kjc,v � �j thus in order to make the honest party Pj to

evaluate the key kjc,v̄ instead the key kjc,v the adversary has to set X̃ = X ��j .
Then it holds that

X̃ + Y + kjc,v = X ��j + Y + kjc,v

= X + Y + kjc,v̄

= Ãj
g

as required and the j-th element (which actually verified by Pj) will be flipped.
Observe that in order to succeed the adversary has to find �j . But, since kjc,v
and kjc,v̄ are random element from Fp, the value �j is also a random element
from Fp. Note that the adversary provides all the PRF result before the garbled
circuit and the garbled inputs are revealed and thus the values that it provides
are independent to the garbled circuit (in particular, they are independent of the
keys kjc,v and kjc,v̄). Note that the same analysis holds for the entries Bg, Cg, Dg

as well.
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Let flipped-g be the event in which the adversary succeeds in flipping the
signal for at least one honest party Pj in the active entry of gate g, it follows
that:

Pr[flipped� g] = Pr[�j = kjc,v � kjc,v̄] =
1

p
<

1

2

Now, assume that when the adversary guesses a wrong �j for some entry
of some gate, the parties do not abort and somehow can keep evaluating the
circuit using the correct key; then the probability of the adversary to break the
correctness of the protocol is just a sum of its success probability for all gates.
Let t be a polynomial such that t() is an upper bound for the number of gates
in the circuit, then by union bound we get:

Pr[⇧J
SFE 6= yJ | cheat] < t()

2
<

1

p()

for every positive polynomial p. ⌅

Emulation in the ideal model. In the following we describe the ideal model
in which the adversary’s view will be emulated, then we show the existence
of a simulator S 0

OUR in the malicious model using the simulator SOUR in the
semi-honest model. The ideal model is as follows:

Inputs. The parties send their inputs (x̄) to the trusted party.
Function computed. The trusted party computes f(x̄).
Adversary decides. The adversary gets the output yI and sends to the trusted

party whether to ‘continue’ or ‘halt’. If ‘continue’ then the trusted party
sends to the honest parties PJ the output yJ , otherwise then the trusted
party sends abort to players PJ .

Outputs. The honest parties output whatever the trusted party sent them
while the corrupted parties output nothing. The adversary A outputs any
arbitrary (PPT) function of the initial input of the corrupted parties and
the value yJ obtained from the trusted party.

The ideal execution of f on inputs x̄, corrupted parties PI and a security pa-
rameter  is denoted by IDEAL

f
A,I(1

, x̄) and the real execution is denoted by

REAL-MALOur
A,I(1

, x̄); in both cases they refer to the joint distribution of the out-
puts of all parties.

The reason that the adversary may decide whether the honest parties obtain
the output or not is due to the fact that guaranteed output delivery and fairness
cannot be achieved with dishonest majority in the general case.

Claim 8 Our protocol is secure in the malicious model, that is

IDEAL
f
A,I(1

, x̄)
c⌘ REAL-MAL

Our
A,I(1

, x̄)
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Proof. The simulator S 0
OUR will engage in the ideal computation such that it

only gives the input xI to the trusted party and then receives the output yI .
The simulator S 0

OUR also instruct the trusted party whether to abort or not (i.e.
whether to send the honest parties their output). The output of the parties (all
of them) in the ideal settings must be indistinguishable to their outputs in the
real execution of our protocol.

The idea of the simulation method is that we can use the fact that there exist
a simulator SOUR in the semi-honest mode, thus, we can construct a garbled
circuit that is indistinguishable from one constucted by honest players; and by
internally running A we can extract the exact locations in which A has cheated.

Before we present the simulator let us define the procedure P 0 (Procedure
which receives a view simulated by SOUR along with a set of keys {kiw,j | i 2
I, w 2 W, j 2 {0, 1}} and rebuilds the garbled circuit just as P did, but instead
of using random keys of its choice it uses the keys received as input for the
corrupted parties I.

Procedure 9 (The Procedure P 0)

Input. A view v taken from distribution VIEW
Our
A under the input x̄; and a

set of keys KI = {ki

w,j

| i 2 I, w 2W, j 2 {0, 1}}
Output. A view v

0 conforming to the message flow in VIEW
Our
A but using the

set of keys from the input.
Execute the procedure P on v with the exception that in step 3a use the keys
given as input rather than choosing new ones for every key of parties I.

It is clear that if KI given to P 0 is chosen randomly then v0 and v are
indistinguishable, that is let KI be the random set of keys, then:

{VIEW
Our
A }x̄ ⌘ {P 0(VIEW

Our
A ,KI)}x̄ (5)

In addition we define the procedure H (Procedure 10) which is given a view
VIEWOur

A and a set of 2n PRF results FI (computed correctly or not) for the keys
of players I. The procedure returns a corresponding view in which the garbled
circuit is computed as if it was computed in a real execution of our protocol
where the adversary input in the o✏ine phase the PRF results FI.

Let KI as before, be the set of keys generated for the corrupted parties in
the o✏ine phase, and �I be the set of masking values generated for the circuit
output wires and for the wires that are attached to the corrupted parties (i.e. the
masking values that are in the adversary’s view). Note that the PRF results that
the corrupted parties input to the functionality (in the o✏ine phase) depends
only on the adversary’s random tape r, and on the keys and masking values
outputted to them from the functionality, that is the PRF results that they
provide can be seen as A(r,KI,�I). Since the PRF results that the corrupted
parties input to the functionality influence only the resulted garbled gates, in
the exact same manner as described in the procedure H, we get the following:
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Procedure 10 (The Procedure H)

Input. A view v taken from distribution VIEW
Our
A under the input x̄; and a

set of PRF results FI of F applied to the set of keys of parties /I (that is, 2n
PRF results for every key {ki

w,j

| i 2 I, w 2W, j 2 {0, 1}}
Output. A view v

0 conforming to the message flow in VIEW
Our
A but with mod-

ified garbled gates according to FI.
The view v contains all the keys belonging to the corrupted parties I, thus
the procedure can tell which of the PRF results in FI computed correctly
and which is not. Recall that FI can be seen as a set of vectors from (F

p

)n,
formally, we denote the values in FI as:

F̃

k

i

w,b

(0 k 1 k g), . . . , F̃
k

i

w,b

(0 k n k g)
F̃

k

i

w,b

(1 k 1 k g), . . . , F̃
k

i

w,b

(1 k n k g)

and the correct PRF values as:

F

k

i

w,b

(0k1kg), . . . , F
k

i

w,b

(0knkg)
F

k

i

w,b

(1k1kg), . . . , F
k

i

w,b

(1knkg)

for every w, b and i 2 I.
The procedure changes the garbled gates in the view as follows:
Let g be a gate with input wires a, b and output wire c, from Functionality 3
we can see that

F̃

k

i

a,0
(0 k j k g) influences A

j

g

F̃

k

i

b,0
(0 k j k g) influences A

j

g

F̃

k

i

a,0
(1 k j k g) influences B

j

g

F̃

k

i

b,1
(0 k j k g) influences Bj

g

F̃

k

i

a,1
(0 k j k g) influences C

j

g

F̃

k

i

b,0
(1 k j k g) influences C

j

g

F̃

k

i

a,1
(1 k j k g) influences D

j

g

F̃

k

i

b,1
(1 k j k g) influences D

j

g

Thus, for every F̃

k

i

w,b

(↵ k � k �) of the above, the procedure computes the

correct value F

k

i

w,b

(↵k� k�). Then it computes the di↵erence

F

�

k

i

w,b

(↵ k � k �) = F̃

k

i

w,b

(↵ k � k �)� F

k

i

w,b

(↵k� k�)

Finally, it adds that di↵erence to the appropriate coordinate in one of the
vectors A

g

, B

g

, C

g

, D

g

as described above. For instance. let �

i

a,0 = F̃

k

i

a,0
(0 k

j k g)� F

k

i

a,0
(0kj kg) then the procedure adds �

i

a,0 to the value A

g

given in
v.
When done with those changes, the procedure output the resulted view v

0.
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– Let v denote the ensemble {VIEWOur
A }x̄ and ṽ be the same as {VIEWOur

A }x̄ with
the exception that the adversary is guaranteed to input correct PRF results
to all keys.

– If the set of keys K and masking values � in v and ṽ are the same, we get
that:

v
c⌘ H(ṽ,A(r,KI,�I)) (6)

We now describe the simulator S 0
OUR:

1. The simulator S 0
OUR runs our protocol internally such that it takes the role

of the honest parties PJ and the trusted party, and uses the algorithm A
to control the parties PI . The simulator halt the internal execution right
after it receives the external values ⇤I to all the corrupted parties in the
online phase. From the internal execution the simulator S 0

OUR can extract
the following values:
(a) Adversary’s keys kIw,0, k

I
w,1 (in addition to the honest party’s keys kJw,0, k

J
w,1

since S 0
OUR is the trusted party who chooses them) for every wire w. We

denote the set of keys (for both adversary and honest parties) as K.
(b) Masking values � for all wires, in particular, the masking values of the

circuit-input wires that are attached to PI , i.e. �I.
(c) The values FI, i.e. 2n results for every key. Since S 0

OUR is the trusted
party in the internal execution, it also knows the PRF results for the
honest parties’ keys. We denote the set of PRF result (for all keys, both
adversary’s and honest party’s) as F. Moreover, observe that S 0

OUR can
check whether A has cheated in FI.

(d) From �I and ⇤I the simulator S 0
OUR can conclude A’s input to the

functionality xI .
2. Now focusing on the ideal world, the honest parties and S 0

OUR (this time as
the adversary) send their inputs to the trusted party. S 0

OUR sends xI (that
extracted earlier).

3. The simulator S 0
OUR receives the output yI from the trusted party.

4. S 0
OUR now knows A’s input to the functionality xI and the output of f on xI

and xJ (where xJ remains hidden to it), it computes v = SOUR(1, I, xI , yI).
5. S 0

OUR computes v0 = P 0(v,KI).
6. S 0

OUR computes v00 = H(v0,FI) (note that FI = A(r,KI,�I)).
7. Having the modified view v00 and the garbled circuit GCM within it, S 0

OUR

now evaluates the circuit on behalf of the honest players. If they abort then
S 0
OUR instructs the trusted party to not send the output yJ to PJ (i.e. to

output ?). Otherwise, if the evaluation succeeds then S 0
OUR instructs the

trusted party to output the correct output yJ . 7

8. The simulator S 0
OUR outputs the view v00 as the adversary’s simulated out-

put.

7
The decision whether to abort or not is not based on whether the adversary cheated or not,
but rather, based on the actual evaluation of the circuit because there might be cases where the
adversary cheats and influence only the corrupted parties, e.g. when cheating in i-th PRF values
used in a garbled gate of some gate whose output wire is a circuit output wire (where i 2 I).
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Fix the set of keys K = KI [KJ and masking values �, let {VIEWOur
A,K,�}x̄

be the probability ensemble of the adversary’s view in the real execution of our
protocol when the functionality generates the keys K and masking values �,
{VIEW0Our

A,K,�}x̄ be the same as {VIEWOur
A,K,�}x̄ with the exception that here the

adversary is guaranteed to input correct PRF results, and let {VIEWsim
A,K,�}x̄

be the probability ensemble of the adversary’s view which resulted by S 0
OUR in

which the keys and masking values generated by the functionality in the internal
execution of the protocol were K and �.

From equation 5 it follows that the view v resulted by SOUR in step 4 is
indistinguishable to the view v0 in step 5, that is:

{v}x̄ ⌘ {v0}x̄

also, note that the view v0 is exactly the view of the adversary in a real execution
of the protocol, in which the adversary provided only correct PRF results, that
is

{v0}x̄ ⌘ {v}x̄
c⌘ {VIEW

0Our
A,K,�}x̄

by equation 6 we get that

{VIEW
sim
A,K,�}x̄ = {v00}x̄

= {H(v0)}x̄
c⌘ {H(VIEW

0Our
A,K,�)}x̄

c⌘ {VIEW
Our
A,K,�}x̄

and since K and � are chosen from the same distribution in both cases it
follows that the simulated view of the adversary and its view in a real execution
of the protocol are the same, that is:

{VIEW
sim
A }x̄

c⌘ {VIEW
Our
A }x̄

In order to show security in the malicious model the above result is not
enough, we also need to show that the joint distribution of the output of all
players are indistinguishable. From our previous correctness proof we know that
when the honest parties reach the circuit-out wires, they always obtain the cor-
rect output (i.e. yJ) except with negligible probability " . Assume by contradic-
tion the existence of a distinguisher D and a polynomial q such that

|Pr[D(IDEAL
f
S0
OUR,I(1

, x̄)) = 1]� Pr[D(REAL-MAL
Our
A,I(1

, x̄)) = 1]| � 1

q()

then we can constructD0 which can distinguish between {VIEWsim
A }x̄ and {VIEWOur

A }x̄
with non negligible probability, D0 is given the view V and works as follows:

1. Extracts the garbled circuit from the view V, and evaluates it on behalf of
the honest parties PJ to obtain yJ .

2. Hands {yJ ,V} to D and output whatever it outputs.

38



if V is the adversary’s view in the real execution of the protocol then

{yJ ,V} ⌘ REAL-MAL
Our
A,I(1

, x̄)

otherwise, if V is the output of S 0
OUR then

{yJ ,V} ⌘ IDEAL
f
S0
OUR,I(1

, x̄)

thus:

Pr[D0({VIEW
Our
A }x̄) = 1] = Pr[D(REAL-MALOur

A,I(1
, x̄)) = 1]

Pr[D0({VIEW
sim
A }x̄) = 1] = Pr[D(IDEAL

f
S0
OUR,I(1

, x̄)) = 1]

and so

|Pr[D0({VIEW
Our
A }x̄) = 1]� Pr[D0({VIEW

sim
A }x̄) = 1]| � 1

q()

which is a contradiction to the above result. Thus we conclude that

IDEAL
f
S0
OUR,I(1

, x̄)
c⌘ REAL-MAL

Our
A,I(1

, x̄)

⌅
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